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Abstract This paper considers parameter estimation of a class of discrete multi-variate
phase-type distributions (DMPH). Such discrete phase-type distributions are based on dis-
crete Markov chains with marked transitions introduced by He and Neuts (Stoch Process
Appl 74(1):37–52, 1998) and is a generalization of the discrete univariate phase–type dis-
tributions. Properties of the DMPHs are presented. An EM-algorithm is developed for
estimating the parameters for DMPHs. A number of numerical examples are provided to
address some interesting parameter selection issues and to show possible applications of
DMPHs.
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1 Introduction

Continuous multivariate phase-type distribution was introduced in Assaf et al. (1984) and
Kulkarni (1989) and have found applications in many areas. For example, Cai and Li (2005)
applied it to model different types of claims in insurance risk; Herbertsson (2011) used it to
model default contagion in credit risk. He and Ren (2014) introduced discrete multivariate
phase-type (DMPH) distribution that is based on the marked Markovian arrival processes
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introduced and studied in He and Neuts (1998). The DMPH distribution bears resemblance
to the continuous MPH-distribution introduced in Kulkarni (1989), in the sense that the
“rewards” associated with a transition in the Markov chain J defined in Kulkarni (1989) are
distributed to different type of event batches.

This paper focuses on the parameter estimation methods for the DMPH introduced in He
and Ren (2014). The problem is related to the parameter estimation in Markovian arrival
process and phase–type distribution and the latter has been studied in the literature for a
long time. For example, Asmussen et al. (1996) introduced an expectation–maximization
(EM) algorithm for fitting phase–type distributions; Olsson (1996) extended the methods to
the case where observations are censored. Breuer (2003) introduced an EM-algorithm for
fitting parameters of a Markovian arrival process with batch arrivals. Buchholz et al. (2010)
presented a method of fitting a Markovian arrival process with marked events according to
moments and joint moments. Hassan Zadeh and Bilodeau (2013) used bivariate phase–type
distributions to fit insurance loss data.

The main contribution of the current paper is that we present an EM-algorithm for esti-
mating parameters of the DMPH distribution, when the exact values of the data is known or
when the data is censored. Issues related to parameter selection and parameters estimation
for some well-known special cases are addressed numerically.

The reminder of the paper is organized as follows. In Section 2, the DMPHs are defined
and some basic properties are given. Section 3 provides a number of quantities and their
properties that are utilized in the EM-algorithm developed in Section 4. Numerical examples
are presented in Section 5 to explore a few issues related to parameter selection and to show
the application of DMPHs. Section 6 concludes the paper.

2 Preliminary: Definition and Basic Properties

The DMPH is based on a discrete Markov chains with marked transitions proposed by He
and Neuts (1998). First, we introduce a standard matrix-representation for the DMPH. Let
{J (t)}t=0,1,··· be a discrete time Markov chain with finite state space {0, 1, · · · ,m} and
transition probability matrix (

1 0
b0 B

)
, (1)

where b0 is an m × 1 vector and B is an m × m matrix. The state 0 is assumed to be
absorbing, and other states are transient. A state transition between the transient states may
be accompanied by the occurrence of a batch of events (to be called an event batch). Each
event in the batch may belong to one of K categories of events of interest (i.e, {1, 2, ..., K}).
Let C0 be the collection of all possible event batches. An element in C0 can be denoted as
h = (h1, h2, · · · , hK), where hk represents the number of type k events in h. According to
the possible occurrence of the event batches, transition matrix B can be decomposed into
{B0, Bh, h ∈ C0} (i.e., B = B0 + ∑

h: h∈C0 Bh), where B0 is a sub-stochastic matrix giving
transition probabilities between transient states without any accompanying event, and Bh,
for h ∈ C0, is a sub-stochastic matrix giving transition probabilities between transient states
with event batch h. The vector b0 contains the transition probabilities from transient states
to the absorbing state 0. Note that, by definition, b0 = e − (B0 + ∑

h∈C0 Bh)e, where e is a
column vector of ones. We assumed that the transition from a transient state to the absorbing
state is not accompanied by an occurrence of an event batch. However, as discussed in Note
1, this is not a big constraint.
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Define Xh to be the number of type h event batches occurred before the underlying
Markov chain is absorbed into state 0. Then X = {Xh, h ∈ C0} forms a vector of non–
negative discrete random variables. For 1 ≤ k ≤ K , let Yk be the total number of type k

events occurred before the absorption into state 0, then Yk can be expressed in {Xh, h ∈ C0}
as Yk = ∑

h∈C0 hkXh. The vector of random variables Y = (Y1, Y2, · · · , YK) is also an
object of interest.

Because of its obvious relationship with phase–type random variables, we say that the
vectors X and Y follows discrete multivaiate phase–type (DMPH) distributions. In He and
Ren (2014), the order of the events within each event batch h is considered, which can be
useful for some applications. For simplicity, in this paper, we ignore the order of individual
events in a batch and then count the total number of events of each type in h. All results
obtained in this paper can be extended to the case in which the order of events in each batch
is considered, though.

Assume that J (0) has a distribution (β0,β). Then the distribution of the DMPH X
(or Y) is well-defined. Without loss of generality, we assume that β0 = 0. A standard
matrix-representation of the DMPH is given by {β, B0, Bh, h ∈ C0, b0}. As mentioned, the
objective of this paper is to estimate the matrix-representation of the DMPH, based on a
sample of Y or X.

Note 1 If the transitions from transient states to the absorbing state 0 may also trigger
events, the vector b0 is decomposed into {b0

0, b0
h, h ∈ C0}, where column vector b0

h contains
the transition probabilities from transient states to the absorbing state with event batch h.
Then the DMPH has a matrix-representation {β, B0, Bh, b0

h, h ∈ C0, b0
0}. We can modify

the underlying Markov chain to transfer the matrix-representation of the DMPH into the
standard form. For transitions governed by {b0

h, h ∈ C0}, we introduce a fictitious state
(e.g., m + 1) that the underlying Markov chain will only go from it to the absorbing state.
Then the matrix-representation of DMPH X has an equivalent matrix-representation of the
standard form given as follows:

β̂ = (β, 0), B̂0 =
(

B0 0
0 0

)
, B̂h =

(
Bh b0

h
0 0

)
, b̂0 =

(
b0

0
1

)
. (2)

Next, we present formulas for joint distributions and moments of random vectors X and
Y. We start with the analysis of X. Let x = {xh, h ∈ C0}, a vector with nonnegative integer
elements. Define

pX,i (x) = P{Xh = xh, h ∈ C0|J (0) = i}, for i = 1, 2, ..., m;
μXh,i = E[Xh|J (0) = i], for i = 1, 2, ..., m.

(3)

Let pX(x) = (pX,1(x), pX,2(x), · · · , pX,m(x)), and μXh
= (μXh,1, μXh,2, · · · , μXh,m), In

He and Ren (2014), it has been shown that

pX(0) = (I − B0)
−1b0;

pX(x) = ∑
h∈C0: xh>0

(I − B0)
−1BhpX({xh − 1, xu, u �= h, u ∈ C0}), if x �= 0. (4)

The first moments and joint second moments of random variables {Xh, h ∈ C0} are
given by

μXh
= (I − B)−1Bhe;

{E[Xh(Xh − 1)|J (0) = i]}i=1··· ,m = 2(I − B)−1BhμXh
;

{E[XhXu|J (0) = i]}i=1··· ,m = (I − B)−1(BhμXu + BuμXh
),

(5)

for h and u in C0.
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For the random vector Y, let y = (y1, y2, · · · , yK), and

pY,i (y) = P{Yk = yk, k = 1, · · · ,K|J (0) = i}, for i = 1, 2, ..., m. (6)

Let pY(y) = (pY,1(y), pY,2(y), · · · , pY,m(y))′. The following results have been shown in
He and Ren (2014). The distribution function of Y is given by

pY(0) = (I − B0)
−1b0;

pY(y) = ∑
h∈C0: u≤y(I − B0)

−1Bhp
Y
(y − h), if y �= 0.

(7)

Note that, for y �= 0, if {h ∈ C0 : h ≤ y} = φ (i.e., an empty set), then pY(y) = 0.
Recall that Yk = ∑

h∈C0 hkXh. Then the moments of Y can be obtained from those of
{Xh, h ∈ C0} as follows: for i = 1, · · · , m,

E[Yk|J (0) = i] = ∑
h∈C0 hkE[Xh|J (0) = i], for k = 1, · · · , K;

E[Yk1Yk2 |J (0) = i] = ∑
h,u∈C0 uk1hk2E[XuXh|J (0) = i], for k1, k2 = 1, · · · ,K.

(8)

As discussed in He and Ren (2014), DMPH allows positive or negative correlations
between the pairs of random variables. In the rest of this section, we present some special
cases of DMPHs.

Example 2.1 Multi-variate geometric distribution. The simplest form of the DMPH dis-
tribution is a multi-variate geometric distribution, which is a special case of the bivariate
negative binomial distribution studied in Subrahmaniam and Subrahmaniam (1973). Let
K = 2, C0 = {(1, 0), (0, 1), (1, 1)}, m = 1, β = 1, B(1,0) = p(1,0), B(0,1) = p(0,1),
B(1,1) = p(1,1), B0 = 0, and b0 = 1 − p(1,0) − p(0,1) − p(1,1). Then the random vec-
tor (X(1,0), X(0,1), X(1,1)) follows a tri-variate geometric distribution. It is easy to see that
a multi-variate negative binomial distribution can be easily constructed by including more
transient states.

Example 2.2 This example considers a special case of the general model, where we assume
that B0 = w0B, and Bh = whB with w0 + ∑

h∈C0 wh = 1 . This example greatly reduces
the number of parameters in the general model, while it still covers some interesting cases.

• Let N = X + 1 follow a discrete phase–type distribution with representation (β, B).
Conditioning on X = n, X(1,0) follows a binomial distribution with parameters (n, ρ)

and X(0,1) follows a binomial distribution with parameters (n, 1 − ρ). Then it is easy
to show that (see for example Ren 2010) the distribution of (X(1,0), X(0,1)) is a special
case of the DMPH distribution with representation {K = 2, C0 = {(1, 0), (0, 1)}, β,
B0 = 0, B(1,0) = ρB, B(0,1) = (1 − ρ)B, b0 = (I − B)e}.

• Let � be a continuous phase–type random variable having PH-representation (β, T ),
where β is a stochastic vector and T is a PH-generator.. Assume that conditioning on
� = θ , the number of type 1 events X(1,0,0) follows a Poisson distribution with mean
λ1θ ; the number of type 2 events X(0,1,0) follows a Poisson distribution with mean
λ2θ ; and the number of type 3 claim batch X(0,0,1) follows a Poisson distribution with
mean λ3θ . Then it can be shown that (X(1,0,0), X(0,1,0), X(0,0,1)) has a DMPH with
representation {K = 3, C0 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, β, B0 = 0, B(1,0,0) =
λ1B/λ, B(0,1,0) = λ2B/λ, B(0,0,1) = λ3B/λ, b0 = (I −B)e}, where λ = λ1 +λ2 +λ3
and B = (I − T/λ)−1. Note that B is substochastic since i) T/λ− I is a PH-generator,
which implies that B = −(T /λ− I )−1 is nonnegative; and ii) e = Be +B(−T e)/λ ≥
Be.
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3 Conditional Expectations of DMPH Distributions

For the development of the EM-algorithm to be presented in Section 4, we introduce a few
random variables and find their conditional expectations. Let Yk(t) be the total number of
type k events occurred in (0, t] and Y(t) = (Y1(t), Y2(t), ..., YK(t)). Define τ = min{t :
J (t) = 0}. It is easy to see that Y = Y(τ ). Let h(t) be the event batch accompanying the
transition from period t to t + 1; h(t) = 0 if there is no event occuring in period t . For
i, j = 1, · · · ,m, define

• Di = I (J (0) = i), where I (·) is the indicator function;
• Ni = ∑τ−1

t=0 I (J (t) = i): the total number of times J (t) enters state i before the
absorption into state 0;

• N(i,j),0 = ∑τ−1
t=0 I (J (t) = i, J (t + 1) = j, h(t) = 0): the total number of i → j

transitions without an event before the absorption into state 0;
• N(i,j),h = ∑τ−1

t=0 I (J (t) = i, J (t + 1) = j, h(t) = h): the total number of i → j

transitions accompanied by event batch h before the absorption into state 0;
• Ni,0 = I (J (τ − 1) = i).

Apparently, we must have Ni = Ni,0 + ∑m
j=1

(
N(i,j),0 + ∑

h: h∈C0 N(i,j),h
)
. The objective

of this section is to find some conditional expectations of those random variables. For that
purpose, we first define vector set {α(y), y ≥ 0}.

Define, for i = 1, 2, ..., m,

αi(y) =
∞∑
t=0

P {Y(t) = y, J (t) = i} , (9)

i.e., the expected number of periods such that, the numbers of occurred events are y,
and J (t) = i in those periods, given that J (0) has distribution (0,β). Let α(y) =
(α1(y), α2(y), ..., αm(y)). Then vectors {α(y), y ≥ 0} can be obtained recursively as
follows:

α(0) = β(I − B0)
−1;

α(y) = ∑
h∈C0: h≤y

α(y − h)Bh(I − B0)
−1, if y �= 0. (10)

Note that, for y �= 0, if {h ∈ C0 : h ≤ y} = φ, then α(y) = 0. The term (I −B0)
−1 is due to

the fact that between two consecutive event batches, there can be any number of transitions
without an event. It is easy to see that P{Y = y} = βpY(y) = α(y)b0.

Conditional expectations of {Di,Ni,N(i,j),0, N(i,j),h, h ∈ C0, Ni,0} can be expressed in
terms of {α(y), y ≥ 0} and {pY(y), y ≥ 0}.

Proposition 3.1 Given Y = y, we have, for i, j = 1, 2, ..., m, and h ∈ C0,

E[Di |Y = y] = 1
βpY(y)

βipY,i (y);
E[Ni |Y = y] = 1

βpY(y)

∑
u: u≤y

αi(u)pY,i (y − u);
E[N(i,j),0|Y = y] = 1

βpY(y)

∑
u: u≤y

αi(u)(B0)(i,j)pY,j (y − u);
E[N(i,j),h|Y = y] = 1

βpY(y)

∑
u: u≤y−h

αi(u)(Bh)(i,j)pY,j (y − u − h);
E[Ni,0|Y = y] = 1

βpY(y)
αi(y)(b0)i .

(11)
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Proof The proof of the proposition is analogous to the continuous case considered in
Asmussen et al. (1996). First, the expression for E[Di |Y = y] is obtained directly by
definition as follows:

E[Di |Y = y] = P{Di = 1|Y = y} = P{J (0)=i,Y=y}
P{Y=y}

= P{J (0)=i}P{Y=y|J (0)=i}
P{Y=y} .

(12)

To find the conditional expectation of Ni , we first note that Ni = ∑∞
t=0 I (J (t) = i) and

E[I (J (t) = i)] = P{J (t) = i}. Then we have

E[Ni |Y = y]
= 1

βpY(y)

∞∑
t=0

P{J (t) = i, Y = y}

= 1
βpY(y)

∞∑
t=0

∑
u: u≤y

P{Y(t) = u, J (t) = i, Y = y}

= 1
βpY(y)

∞∑
t=0

∑
u: u≤y

P{Y(t) = u, J (t) = i}P{Y = y|Y(t) = u, J (t) = i}

= 1
βpY(y)

∑
u: u≤y

∞∑
t=0

P{Y(t) = u, J (t) = i}P{Y = y − u|J (0) = i}
= 1

βpY(y)

∑
u: u≤y

αi(u)pY,i (y − u).

(13)

For N(i,j),0, N(i,j),h, and Ni,0, we have N(i,j),0 = ∑∞
t=0 I (h(t) = 0, J (t + 1) =

j |J (t) = i), N(i,j),h = ∑∞
t=0 I (h(t) = h, J (t + 1) = j |J (t) = i), for h ∈ C0, and

Ni,0 = ∑∞
t=0 I (J (t) = i, J (t + 1) = 0). Then the conditional expectations of the ran-

dom variables can be obtained similarly. Details are omitted. This completes the proof of
Proposition 3.1.

Using the recursive formulas in Eqs. 7 and 10, it can be shown that
∑

u≥0 α(u)=β(I−B)−1

and
∑

u≥0 pY(u) = e. By Proposition 3.1, the unconditional expectations of Di , N(i,j),0,
N(i,j),h, and Ni,0, can be obtained.

Corollary 3.2 For the DMPH X, we have

{E[Di]}i=1,2,...,m = β;
{E[Ni]}i=1,2,...,m = β(I − B)−1;
{E[N(i,j),0]}i,j=1,2,...,m = diag(β(I − B)−1)B0;
{E[N(i,j),h]}i,j=1,2,...,m = diag(β(I − B)−1)Bh, for h ∈ C0;
{E[Ni,0]}i=1,2,...,m = diag(β(I − B)−1)b0,

(14)

where diag(β(I − B)−1) is a diagonal matrix with the elements of the vector β(I − B)−1

on its diagonal.

Note 2 For the DMPH X considered in Proposition 3.1, the number of periods without a
batch event is not recorded. If the number of periods without an event is recorded (i.e., every
period is accompanied by an event batch), Proposition 3.1 can be modified as follows. We
introduce a fictitous event type K + 1, set BK+1 = B0 (and then set B0 = 0), and define
XK+1 = YK+1 as the total number of such events. Then all results in Proposition 3.1 hold
for the modified DMPH (with B0 = 0).
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Note 3 Expectations of {Di,N(i,j),0, N(i,j),h, h ∈ C0, Ni,0}, conditioning on X, instead of
Y, can be found similarly. In fact, we can treat each event batch h as a super event. Then
Proposition 3.1 holds for the super events.

Next, we generalize Proposition 3.1 to the case when only partial information of some
types of events are observed. To this end, we divide the type of events into two groups: K1 =
{1, · · · ,K1} and K2 = {K1 + 1, · · · , K} and rewrite Y(t) as Y(t) = (

Y(1)(t), Y(2)(t)
)
,

where Y(1)(t) = (Y1(t), ..., YK1(t)) and Y(2)(t) = (YK1+1(t), ..., YK(t)). We want to
find the expectations in Proposition 3.1 under the following two conditions: i) {Y(1) =
y(1), Y(2) ≤ y(2)} and ii) {Y(1) = y(1), Y(2) ≥ y(2)}.

For the case with condition {Y(1) = y(1), Y(2) ≤ y(2)}, we generalize α(y) and pY(y) as
follows. Define, for i = 1, 2, ..., m,

α≤,i (y) =
∞∑
t=0

P{Y(1)(t) = y(1), Y(2)(t) ≤ y(2), J (t) = i}
= ∑

u(2): u(2)≤y(2)

αi((y(1), u(2))),
(15)

and α≤(y) = (α≤,1(y), ..., α≤,m(y)). Then we have that

α≤(0) = β(I − B0)
−1, if y = 0;

α≤((0, y(2))) = β(I − B0)
−1

+ ∑
h∈C0: h≤y

α≤(y − h)Bh(I − B0)
−1, if y(2) �= 0;

α≤(y) = ∑
h∈C0: h≤y

α≤(y − h)Bh(I − B0)
−1, otherwise.

(16)

For i = 1, 2, ..., m, define

pY,≤,i (y) = P{Y(1) = y(1), Y(2) ≤ y(2)|J (0) = i}
= ∑

u(2): u(2)≤y(2)

pY,i ((y(1), u(2))). (17)

and pY,≤(y) = (pY,≤,1(y), ..., pY,≤,m(y)). We have

pY,≤(0) = (I − B0)
−1 b0, if y = 0;

pY,≤((0, y(2))) = (I − B0)
−1 b0

+ ∑
h∈C0: h≤y

(I − B0)
−1 BhpY,≤(y − h), if y(2) �= 0;

pY,≤(y) = ∑
h∈C0: h≤y

(I − B0)
−1 BhpY,≤(y − h), otherwise.

(18)

Similar to Proposition 3.1, the conditional expectations of Di , Ni , N(i,j),0, N(i,j),h, and
Ni,0 can be obtained. First, the probability of {Y(1) = y(1), Y(2) ≤ y(2)} is given by

P{Y(1) = y(1), Y(2) ≤ y(2)} = α≤(y)b0 = βpY,≤(y). (19)

The conditional expectations of Di , Ni , N(i,j),0, N(i,j),h, and Ni,0 can be obtained as
follows.
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Proposition 3.3 Given that Y(1) = y(1), Y(2) ≤ y(2), we have

E[Di |Y(1) = y(1), Y(2) ≤ y(2)] = βipY,≤,i (y)

βpY,≤(y)
;

E
[
Ni |Y(1) = y(1), Y(2) ≤ y(2)

] = 1
βpY,≤(y)

( ∑
u: u≤y

αi(u)pY,≤,i (y − u)

)
;

E[N(i,j),0|Y(1) = y(1), Y(2) ≤ y(2)]
= 1

βpY,≤(y)

( ∑
u: u≤y

αi(u)(B0)(i,j)pY,≤,j (y − u)

)
;

E[N(i,j),h|Y(1) = y(1), Y(2) ≤ y(2)]
= 1

βpY,≤(y)

( ∑
u: u≤y−h

αi(u)(Bh)(i,j)pY,≤,j (y − u − h)

)
;

E[Ni,0|Y(1) = y(1), Y(2) ≤ y(2)] = α≤,i (y)(b0)i
βpY,≤(y)

.

(20)

Lastly, we consider the case with condition {Y(1) = y(1), Y(2) ≥ y(2)}. Define for i =
1, 2, ..., m,

α≥,i (y) =
∞∑
t=0

P
{
Y(1)(t) = y(1), Y(2)(t) ≥ y(2), J (t) = i

}
= ∑

u(2): u(2)≥y(2)

αi((y(1), u(2))).
(21)

and α≥(y) = (α≥,1(y), ..., α≥,m(y)). Then we have that

α≥(0) = β

(
I − B0 − ∑

h∈C0: h(1)=0
Bh

)−1

;

α≥(y) =
( ∑

h∈C0: h(1)≤y(1), (y(1)−h(1),(y(2)−h(2))+)�=y
α≥((y − h)+)Bh

)

·
(

I − B0 − ∑
h∈C0: (y(1)−h(1),(y(2)−h(2))+)=y

Bh

)−1

, if y �= 0,

(22)

where (y − h)+ = (max(0, y1 − h1), ..., max(0, yK − hK)).
For i = 1, 2, ..., m, define

pY,≥,i (y) = P{Y(1) = y(1), Y(2) ≥ y(2)|J (0) = i}
= ∑

u(2): u(2)≥y(2)

pY,i ((y(1), u(2))). (23)

and pY,≥(y) = (pY,≥,1(y), ..., pY,≥,m(y)). We have

pY,≥(0) =
(

I − B0 − ∑
h∈C0: h(1)=0

Bh

)−1

b0;

pY,≥(y) =
(

I − B0 − ∑
h∈C0: (y(1)−h(1),(y(2)−h(2))+)=y

Bh

)−1

·
( ∑

h∈C0: h(1)≤y(1), (y(1)−h(1),(y(2)−h(2))+)�=y
BhpY,≥((y − h)+)

)
, if y �= 0.

(24)
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Similar to Propositions 3.1 and 3.3, the conditional expectations of Di , Ni , N(i,j),0,
N(i,j),h, and Ni,0 can be obtained. First, the probability of {Y(1) = y(1), Y(2) ≥ y(2)} is
given by

P{Y(1) = y(1), Y(2) ≥ y(2)} = α≥(y)b0 = βpY,≥(y). (25)

To present the formulas for the expectations, we need to introduce more notation. Let


 = {(0, ..., 0, jK1+1, ..., jK) : jk = 0 or 1, k = K1 + 1, ..., K}
= {η = (η1, ..., ηK) : ηk = 0, if k = 1, ..., K1; ηk = 0 or 1, for k = K1 + 1, ..., K}.

(26)
It is clear that 
 has 2K−K1 elements. Define, for η ∈ 
,

�η(y) = {u : uk = 0, 1, 2, ..., yk, if ηk = 0; uk = yk + 1, if ηk = 1} . (27)

Using the above notation, vectors α≥(y) and pY,≥(y) can be redefined as follows: for η ∈ 
,

α
η
≥,i (y) = ∑∞

t=0 P {Yk(t) = yk, if ηk = 0; Yk(t) ≥ yk + 1, if ηk = 1; J (t) = i} ;
p

η
Y,≥,i (y) = P{Yk = yk, if ηk = 0; Yk ≥ yk, if ηk = 1|J (0) = i}. (28)

For convenience, let ηmax = (0, ..., 0, 1, ..., 1) with exactly K1 zero elements, and 0 for the
vector of zeros. It is easy to see that α(y) = α0≥(y) and pY(y) = p0

Y,≥(y).

Proposition 3.4 Given that Y(1) = y(1), Y(2) ≥ y(2), the conditional expectation of Di , Ni ,
N(i,j),0, N(i,j),h, and Ni,0 are given by

E[Di |Y(1) = y(1), Y(2) ≥ y(2)] = βip
ηmax
Y,≥,i (y)

βpηmax
Y,≥ (y)

. (29)

The conditional expectation of Ni is given by

E
[
Ni |Y(1) = y(1), Y(2) ≥ y(2)

]
= 1

βpηmax
Y,≥ (y)

∑
u∈�0(y)

α0≥,i (u)p
ηmax
Y,≥,i (y − u)

+ 1
βpηmax

Y,≥ (y)

∑
η∈
: η �=0

∑
u∈�η(y)

α
η
≥,i (u)p

η
Y,≥,i ((y − u)+).

(30)

The conditional expectation of N(i,j),0 is given by

E
[
N(i,j),0|Y(1) = y(1), Y(2) ≥ y(2)

]
= 1

βpηmax
Y,≥ (y)

∑
u∈�0(y)

α0≥,i (u)(B0)(i,j)p
ηmax
Y,≥,j (y − u)

+ 1
βpηmax

Y,≥ (y)

∑
η∈
: η �=0

∑
u∈�η(y)

α
η
≥,i (u)(B0)(i,j)p

η
Y,≥,i ((y − u)+).

(31)

The conditional expectation of N(i,j),h, for h ∈ C0, is given by

E
[
N(i,j),h|Y(1) = y(1), Y(2) ≥ y(2)

]
= 1

βpηmax
Y,≥ (y)

∑
u∈�0(y−h)

α0≥,i (u)(Bh)(i,j)p
ηmax
Y,≥,j (y − u − h)

+ 1
βpηmax

Y,≥ (y)

∑
η∈
: η �=0

∑
u∈�η(y−h)

α
η
≥,i (u)(Bh)(i,j)p

η
Y,≥,i ((y − u − h)+).

(32)

The conditional expectation of Ni,0 is given by

E[Ni,0|Y(1) = y(1), Y(2) ≥ y(2)] = α
ηmax≥,i (y)(b0)i

βpηmax
Y,≥ (y)

. (33)
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Note 4 The conditions {Y(1) = y(1), Y(2) ≤ y(2)} and {Y(1) = y(1), Y(2) ≥ y(2)} can be
generalized to {Yk ∈ �k, k = 1, 2, ..., K}, where �k is a set of possible values for Yk . It is
clear that the conditional expectations of Di , Ni , N(i,j),h, and Ni,0 are obtainable. However,
the expressions for the conditional expectation become much more involved. We omit the
details.

4 Parameter Estimation

In this section, we present an EM-algorithm to estimate the parameters of the
DMPH distribution. Assume that a sample of Y of size n is observed as y1...n ={

y[v] = (y
[v]
1 , ..., y

[v]
K ), v = 1, 2, ..., n

}
. Assume that C0, the collection of types of the

event batches, and m, the number of states of the underlying Markov chain, are given. We
will estimate parameters

θ = {β, B0, Bh, h ∈ C0, b0} (34)

for the standard matrix-representation of the model. As in Asmussen et al. (1996), the EM-
algorithm is a natural way to estimating parameters here because of the connection between
the distribution and the underlying Markov chain. An observation y[v] of the numbers of
individual events before absorbtion can be regarded as an incomplete observation of the
Markov chain {J (t)}t=0,1,....

The complete information of the Markov chain {J (t)}t=0,1,··· include the absorption time
τ , the states of the process J0, J1, · · · , Jτ−1 at time instants t = 0, 1, ..., τ − 1 before
absorbtion and the event batches H1, H2, · · · , Hτ−1 that are associated with the transitions
made at time 1, 2, · · · , τ − 1, where Ht = 0 if there is no event batch in the period. The
probability of observing a complete sample path (j0, j1, · · · , jτ−1, h1, h2, · · · , hτ−1) is
given by

αj0(Bh1)(j0,j1) · · · (Bhτ−1)(jτ−2,jτ−1)(b
0)jτ−1 . (35)

Let

x = {x[1], ..., x[n]}
= {j [1]

0 , j
[1]
1 , · · · , j

[1]
τ−1, h[1]

1 , h[1]
2 , ..., h[1]

τ−1, · · · , (36)

j
[n]
0 , j

[n]
1 , · · · , j

[n]
τ−1, h[n]

1 , h[n]
2 , ..., h[n]

τ−1}
be the complete information corresponding to the observed sample y1...n. For each point
x[v], v = 1, · · · , n, the conditional expectations of D

[v]
i , N [v]

i , N [v]
(i,j),0, N [v]

(i,j),h, and N
[v]
i,0 , as

defined in Section 3, can be calculated. Let Di = ∑n
v=1 D

[v]
i , Ni = ∑n

v=1 N
[v]
i , N(i,j),0 =∑n

v=1 N
[v]
(i,j),0, N(i,j),h = ∑n

v=1 N
[v]
(i,j),h, and Ni,0 = ∑n

v=1 N
[v]
i,0 . Then the likelihood of

observing x is given by

L(θ , x) =
(

m∏
i=1

β
Di

i

)⎛
⎝ ∏

h∈C0∪{0}

m∏
i=1

m∏
j=1

{Bh}N(i,j),h
(i,j)

⎞
⎠

(
m∏

i=1

(b0)
Ni,0
i

)
, (37)

and the loglikelihood is defined by l(θ , x) = log L(θ , x). Maximizing the above loglike-
lihood under constraints of β1 + β2 + ... + βm = 1 and (B0 + ∑

h∈C0 Bh)e + b0 = e,
gives the maximum likelihood estimator of the transition probabilities. This yields for
i, j = 1, · · · ,m, and h ∈ C0,

β̂i = Di

n
, (B̂0)(i,j) = N(i,j),0

Ni

, (B̂h)(i,j) = N(i,j),h

Ni

, and (b̂0)i = Ni,0

Ni

. (38)
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Notice that D1 +D2 + ...+Dm = n and Ni = Ni,0 +∑m
j=1

(
N(i,j),0 + ∑

h: h∈C0 N(i,j),h
)
.

A detailed proof of the above formulas can be found in Basawa and Rao (1980). For
convenience, we provide a proof in Appendix A.

In EM-algorithm, we first assume an initial values for the parameter vector θ , then it
is updated iteratively. Suppose the value of the parameter vector is θ (s) after the s-th iter-
ation. In the (s + 1)-st expectation step, we compute the conditional expectation of the
loglikelihood l(θ , x) given the observed sample y to obtain

Q(θ (s), y1...n) = E[l(θ (s), X)|y1...n]. (39)

Then in the (s + 1)-st maximization step, a new set of parameter value θ is obtained by

θ (s+1) = argmaxθQ(θ (s), y1...n). (40)

The above maximization can be carried out simply by using the Eq. 38, which leads to

β
(s+1)
i = D(k+1)

i

n
, (B0)

(s+1)
(i,j) = N (s+1)

(i,j),0

N (s+1)
i

,

(Bh)
(s+1)
(i,j) = N (s+1)

(i,j),h

N (s+1)
i

, (b0)
(s+1)
i = N (s+1)

i,0

N (s+1)
i

,

(41)

where, for i, j = 1, · · · , · · · , m, and h ∈ C0,

D(s+1)
i = Eθ (s) [Di |y1...n] =

n∑
v=1

Eθ (s)

[
D

[v]
i |Y = y[v]

]
;

N (s+1)
i = Eθ (s) [Ni |y1...n] =

n∑
v=1

Eθ (s)

[
N

[v]
i |Y = y[v]

]
;

N (s+1)
(i,j),0 = Eθ (s) [N(i,j),0|y1...n] =

n∑
v=1

Eθ (s)

[
N

[v]
(i,j),0|Y = y[v]

]
;

N (s+1)
(i,j),h = Eθ (s) [N(i,j),h|y1...n] =

n∑
v=1

Eθ (s)

[
N

[v]
(i,j),h|Y = y[v]

]
;

N (s+1)
i,0 = Eθ (s) [Ni,0|y1...n] =

n∑
v=1

Eθ (s)

[
N

[v]
i,0 |Y = y[v]

]
.

(42)

Note that we use superscript ”[v]” for sample points and superscript ”(s)” for iteration.
Each of the conditional expectations on the right–hand–side of Eq. 42 can be computed by
applying Proposition 3.1. For the issue of convergence of the EM-algorithm, one is referred
to Jeff Wu (1983).

For convenience, we summarize the steps in the EM-aglorithm for computation.

Step 1 Intialize parameters {β, B0, Bh, h ∈ C0, b0}.
Step 2 For each sample point y[v], a) use formulas given in Eqs. 7 and 10 to compute

pY(u) and α(u) for u ≤ y, respectively; and b) use formulas given in Eq. 11 to compute
conditional expectations of Di , Ni , N(i,j),0, N(i,j),h, and Ni,0.

Step 3 Use formulas given in Eq. 42 to compute the sums of the conditional expectations
for the sample y1...n and compute the estimates of parameters using formulas given in
Eq. 41.

Step 4 Repeat Steps 2 and 3 until the solution is satisfactory according to some pre-
given rule, which can be i) the difference between two consecutive solutions ||θ (s+1) −
θ (s)|| or the difference between two consecutive loglikelihoods | log(L̂(θ (s+1), y1...n)) −
log(L̂(θ (s), y1...n))|, where the likelihood associated with sample y1...n is defined as

L̂(θ , y1...n) = n
v=1P{Y = y[v]} = n

v=1βpY(y[v]). (43)
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Note 5 For the cases discussed in Notes 1 to 3, the above EM-algorithm still works with
minor modification. All we need to do is to set the initial parameter set θ properly.

Note 6 If the sample points/observations are in the form {Y(1) = y(1), Y(2) ≤ y(2)} or
{Y(1) = y(1), Y(2) ≥ y(2)}, the EM-algorithm works by utilizing formulas given in Propo-
sitions 3.3 and 3.4 for individual sample points. The computation of the expectations for
such cases is much more involved, especially for the latter case. For the case with K = 2,
explicit formulas are presented in Appendix C for the use of our computation for Section
5.3. For this case, four types of sample points are considered: i) {Y1 = y1, Y2 = y2}; ii)
{Y1 = y1, Y2 ≥ y2}; iii) {Y1 ≥ y1, Y2 = y2}; and iv) {Y1 ≥ y1, Y2 ≥ y2}.

Note 7 For many applications, there are duplications in sample points. For such cases, one
perform E-steps for each of the distinct sample points. Then the loglikelihood of the whole
sample is just the summation of the loglikelihood of each distinct sample points weighted
by the number of duplications.

An interesting property of the proposed EM-algorithm is that either the sample means
are preserved in the iteration process or the orders of sample means and the means of the
estimated DMPHs are consistent in each of the iteration process.

Proposition 4.1 Consider collected sample y1...n = {y[v], v = 1, 2, ..., n}. Then we have,
for each event type k,

(1) If the sample points is of the form {Y [v]
k ≤ y

[v]
k , v = 1, 2, ..., n}, then we have

Eθ (s) [Yk] ≤ 1
n

∑n
v=1 y

[v]
k , for s = 1, 2, ....

(2) If the sample points is of the form {Y [v]
k = y

[v]
k , v = 1, 2, ..., n}, then we have

Eθ (s) [Yk] = 1
n

∑n
v=1 y

[v]
k , for s = 1, 2, ....

(3) If the sample points is of the form {Y [v]
k ≥ y

[v]
k , v = 1, 2, ..., n}, then we have

Eθ (s) [Yk] ≥ 1
n

∑n
v=1 y

[v]
k , for s = 1, 2, ....

Proof We only give details for the case with {Y = y}. The proof is similar to that of a sim-
ilar property for continuous time phase-type distributions given in Asmussen et al. (1996)
and Hassan Zadeh and Bilodeau (2013). First, it is easy to see that, for k = 1, 2, ..., K ,
v = 1, 2, ..., n, and the sample y,

y
[v]
k =

∑
h∈C0

hk

m∑
i=1

m∑
j=1

N
[v]
(i,j),h. (44)

In each iteration of the EM-algorithm, we have for v = 1, · · · , n

Eθ (s+1) [Y [v]
k ] = Eθ (s+1)

[ ∑
h∈C0

hk

m∑
i=1

m∑
j=1

N
[v]
(i,j),h

]

= Eθ (s)

[ ∑
h∈C0

hk

m∑
i=1

m∑
j=1

N
[v]
(i,j),h

∣∣∣∣∣ y

]

= Eθ (s)

[
Y

[v]
k

∣∣∣ y
]

= y
[v]
k

(45)
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Summing up both sides of Eq. 45 over v = 1, · · · , n and then divided by n, one obtain
the desired result. For the other two cases, the equality in Eq. 44 becomes inequality. Then
the equality in Eq. 45 becomes inequality of the same type accordingly. This completes the
proof of Proposition 4.1.

Proposition 4.1 reveals an intrisic property of the EM-algorithm and it is useful for
checking computation accuracy. A few observations associated with the EM-algorithm and
the likelihood L̂(θ , y1...n) can also be useful for checking computation accuracy and the
correctness of programming.

• The likelihood L̂(θ (s), y1...n) is increasing in s.
• The likelihood L̂(θ, y1...n) of the optimal solution θ is increasing in m.

We would like to point out that the elements in the batch set C0 are determined by the
nature of application problems. On the other hand, the order m is a parameter that has to be
chosen by the parameter estimation algorithm, unless the type of the DMPH to be fitted is
given (see Example 4.1). In principle, m should be chosen to the smallest value such that
the model fits the data reasonably well.

Example 4.1 (Example 2.1 continued) For this case, the EM-algorithm can be simplified
significantly since m = 1. In addition, it is easy to see that E[D|Y = y] = 1 and E[N |Y =
y] = y1 + ... + yK . However, the computations of other vectors and quantities (e.g., α(y),
E[Nh|Y = y]) still have to use the formulas given in Section 3.

Example 4.2 (Example 2.2 continued) In the special case, we assumed Bh = whB, for
h ∈ C0∪{0}, which reduced the number parameters greatly. For this case, the E-step remains
the same as the general case. The formulas for performing the M-step are given by

(B̂)(i,j) = 1
Ni

∑
h∈C0∪{0}

N(i,j),h;

ŵh =
∑m

i=1
∑m

j=1 N(i,j),h∑
h∈C0∪{0}

∑m
i=1

∑m
j=1 N(i,j),h

.
(46)

A proof of Eq. 46 can be found in Appendix B.

5 Numerical Analysis

In this section, we carry out a numerical analysis on the EM-algorithm to address technical
issues such as the selection of m and the impact of B0 (Section 5.1). We also examine
the approximation of the well-known uniform distribution by DMPHs (see Section 5.2). In
Section 5.3, we examine the generality of the model by using it to fit data from different
sources.

We would like to pioint out that, to assess the goodness-of-fit, as discussed in Section 4,
we use two criteria: i) The distance between two consecutive solutions θ ; and ii) the value
of the corresponding likelihood function L̂(θ , y1...n).

5.1 An Example

We consider an example with K = 3 and C0 = {h1 = (1, 0, 0), h2 = (0, 1, 0), h3 =
(0, 0, 1), h4 = (2, 0, 1), h5 = (0, 1, 1)}. We consider a sample with n = 8 distinct sample
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Table 1 Frequency estimates for Section 5.1 (B0 = 0)

m r̂1 r̂2 r̂3 r̂4 r̂5 r̂6 r̂7 r̂8

(5) (8) (4) (4) (3) (2) (2) (1)

1 13.88 6.362 4.026 2.136 0.268 2.121 0.076 0.1257

2 15.39 5.016 5.129 1.666 0.5117 1.104 0.0825 0.0975

3 17.222 5.832 3.652 1.418 0.1258 0.7196 0.0229 0.0059

4 6.947 14.88 2.084 4.078 0.2881 0.6141 0.0801 0.0253

6 3.964 11.96 6.999 4.173 1.0767 0.6396 0.1123 0.0452

points y1...n = {(1, 1, 1), (1, 2, 2), (2, 1, 2), (2, 3, 2), (3, 1, 4), (3, 3, 3), (5, 5, 2), (8, 2, 4)}.
The repeating numbers of the sample points {r1, ..., r8} are given in the second row of
Table 1 (in parentheses). The sample point is of the form {Y = y}. We first consider a
DMPH model with B0 = 0. For m = 1, 2, 3, and 4, we use the EM-algorithm to esti-
mate {β, B(1,0,0), B(0,1,0), B(0,0,1), B(2,0,1), B(0,1,1), b0}. Then we compute the probabilites
P{Y = y[v]} for the eight distinct sample points, and estimate the frequencies for each
sample point by: for v = 1, 2, ..., 8.

r̂v =
(

n∑
s=1

rs

)
P{Y = y[v]}∑n
s=1 P{Y = y[s]} . (47)

The results are presented in Table 1. As is shown in Table 1, if m increases, the estimates are
closer to the original data. The loglikelihoods of the final solutions for m = 1, 2, 3, and 4,
are −147.9, −123.64, −101.5, −97.33, and −73.72, respectively, which is increasing in m.

Second, we remove the constraint B0 = 0. The results are given in Table 2. The (log)
likelihoods of the final solutions for m = 1, 2, 3, and 4, are −147.9, −123.6, −111.6,
−89.3, and −80.0, respectively, which is also increasing in m. Comparing results in
Tables 1 and 2, the first model generates slightly better results when m is not small. Thus,
the effect of setting the proper B0 and selecting the proper m on the quality of the fitted
DMPH is significant, and shouldn’t be ignored in the modeling process. In addition, we
note that the likelihood for the case with m = 4 and without the constraint is smaller than
the likelihood for the case with constraint B0 = 0. This contradicts the theory. A possible
explanation is that the initial values for B0 led to a local maxima (e.g., Wu 1983).

For this arbitrarily generated example, fitting of the sample distribution/frequencies
seems inadquate. The reason is that distinct sample points are scattered in a space of
three dimensions. Thus, fitting a multivariate distribution for this set of sample points is

Table 2 Frequency estimates for Section 5.1 (B0 �= 0)

m r̂1 r̂2 r̂3 r̂4 r̂5 r̂6 r̂7 r̂8

(5) (8) (4) (4) (3) (2) (2) (1)

1 13.89 6.349 4.017 2.144 0.273 2.122 0.078 0.1224

2 15.37 5.000 5.168 1.662 0.5117 1.104 0.0825 0.096

3 8.232 7.480 10.35 1.754 0.337 0.730 0.068 0.043

4 5.203 13.24 6.612 3.024 0.106 0.757 0.470 0.0075

6 6.265 9.252 8.253 3.430 0.194 1.417 0.176 0.0103
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challenging. A larger m may lead to better fitting, though. As will be shown in Sections 5.2
and 5.3, the fitting results are much better if the set of distinct sample points are located in
a geometrically compact region, even for small m.

5.2 Approximating a Bivariate Uniform Distribution

As another numerical experiment, we fit the DMPH distribution to a hypothetical data set,
where there are 5 observations on each point of a (0, 1, 2, 3, 4)×(0, 1, 2, 3, 4) grid (i.e., n =
25 distinct sample points, and repeating number rv = 5, for v = 1, ..., 25). By definition,
we must have K = 2. We assume that C0 = {(1, 0), (0, 1), (1, 1)}. Since the purpose
of this exercise is to examine whether the DMPH distribution can approximate a bivariate
uniform distribution, we do not restrict the number of parameters and so no structure for the
matrices are assumed. We fit the DMPH distribution with m = 1, 4, 8, and 12, and report
the approximation results r̂v in Table 3. In Table 3, the first row is for y1 and the first column

Table 3 Parameters fitting of the bivariate uniform distribution data

(y1, y2) 0 1 2 3 4 m

0

(5) (5) (5) (5) (5)

30.988 12.393 4.956 1.982 0.792 1

5.502 5.591 3.871 3.195 1.353 4

5.198 5.197 5.198 5.184 3.251 8

5.000 4.999 4.998 4.982 4.094 12

1

(5) (5) (5) (5) (5)

12.393 9.916 5.949 3.172 1.586 1

5.591 7.742 9.604 7.014 3.088 4

5.197 5.197 5.201 6.504 4.458 8

5.000 5.000 5.048 4.885 6.477 12

2

(5) (5) (5) (5) (5)

4.956 5.949 4.759 3.173 1.903 1

3.871 9.604 11.321 7.476 3.419 4

5.198 5.201 6.508 6.227 3.733 8

4.999 4.986 5.378 4.737 4.200 12

3

(5) (5) (5) (5) (5)

1.982 3.172 3.173 2.538 1.777 1

3.195 7.014 4.476 4.997 2.448 4

5.183 6.505 6.228 7.463 3.928 8

5.001 5.002 4.739 5.571 5.543 12

4

(5) (5) (5) (5) (5)

0.792 1.586 1.903 1.777 1.421 1

1.353 3.088 3.419 2.448 1.307 4

3.250 4.458 3.734 3.928 2.857 8

4.258 5.990 4.121 6.270 3.710 12
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is for y2. The repeating numbers of sample points are in the first row of each block (in fact,
all of them are 5), given in parenthses, and the estimates of the repeating numbers are given
in rows 2 to 5 in each block for m = 1, 4, 8, and 12, respectively. The loglikelihoods of the
four cases are −484.08, −435.25, −403.97, and −403.3. As is shown by Table 3, the fitting
is quite good when m is 12.

5.3 An Auto Insurance Claims Example

We begin with the auto insurance property damage and bodily injury claim data used in
David Cummins and Wiltbank (1983), in which the authors concluded that none of the well–
known bivariate discrete distributions were suitable. The authors argued that this is because
the marginal distributions of the number of the two types of events seem to come from
different distribution families. However, for most commonly used bivariate distributions,
the marginal distributions are from the same family. The data is listed in Table 4. Notice
that the data set covers all four scenarios: {Y1 = y1, Y2 = y2}, {Y1 = y1, Y2 ≥ y2},
{Y1 ≥ y1, Y2 = y2}, and {Y1 ≥ y1, Y2 ≥ y2}.

We fit the DMPH distribution to the data, assuming that K = 2 and C0 =
{(1, 0), (0, 1), (1, 1), (1, 2)}. That implies that the possible combinations of claims are
(1) an accident causes one property damage claim only; (2) an accident causes one bod-
ily injury claim only; (3) an accident causes one property damage claim and one bodily
injury claim; and (4) an accident causes one property damage claim and two bodily injury
claim. Notice that the claim batches are selected using intuition here. For example, (0, 2)

is not selected because it is unlikely that two people are injured yet there is no car dam-
ages. The expected number of events are reported in parenthesis in Table 5, where the
first row of each block gives the observed numbers of claim and the second to fifth row
presents the expected numbers of claims by the fitted distribution with m = 1, m = 2,
m = 3, and m = 4 (denoted by model 1, 2, 3 and 4) respectively. From the table,
we do see that with m = 4, one could capture the pattern of the bivariate distribution.
This shows that the DMPH distribution is flexible enough to allow dissimilar marginal
distributions.

The loglikelihoods obtained for the four models are −374.57, −280.13, −277.55, and
−277.24, for m = 1, 2, 3, and 4, respectively. To determine which model is “better” in
describing the data, we use Akaike’s Information Criterion (AIC). AIC is defined by
AIC = 2K −2 ln(L̂), where K is the number of parameters in the model and L̂ is the max-
imized value of the likelihood function for the estimated model. For the DMPH models, the

Table 4 Auto insurance claim data

Property damage events

(y1, y2) 0 1 2 ≥ 3 Totals

Bodily injury events 0 44 49 2 1 96

1 10 20 2 1 33

2 2 6 1 1 10

≥ 3 0 4 5 1 10

Total 56 79 10 4 149
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Table 5 Parameters fitting of the auto insurance claim data

Property damage events

0 1 2 ≥ 3 m

Bodily injury events (44) (49) (2) (1)

49.666 8.2777 1.3796 0.2759 1

0 44.6260 45.7184 1.6086 0.9120 2

44.7899 48.9682 1.9799 0.9382 3

43.9454 49.0076 1.9931 0.9872 4

(10) (20) (2) (1)

8.2777 11.0370 11.7268 4.7183 1

1 8.8724 22.2463 3.1715 1.0594 2

8.9647 20.1446 1.9899 1.2284 3

10.3500 20.1218 1.9991 1.0200 4

(2) (6) (1) (1)

1.3796 3.4490 5.7484 10.8788 1

2 1.7887 8.0554 2.4288 0.8638 2

1.7942 5.9752 1.0274 0.7153 3

1.4922 5.9449 1.0068 0.8747 4

(0) (4) (5) (1)

0.2759 1.0761 2.6010 28.2309 1

≥ 3 0.4640 3.6590 2.2598 1.2651 2

0.4489 3.9821 4.9075 1.1448 3

0.2071 3.9829 4.9462 1.1200 4

number of parameters K is given by K = m − 1 + 5m2. The AIC values for the four mod-
els are found to be 760, 602, 648, and 720 for m = 1, 2, 3, and 4, respectively. Thus, the
model with m = 2 is the best model according to AIC. For the m = 2 case, we present the
final representation of the DMPH:

β = (0.0299, 0.9701); B0 =
(

0.0357 0.0041
0.0039 0.0357

)
;

B(1,0) =
(

0.2430 0.0871
0.0000 0.1831

)
; B(0,1) =

(
0.0005 0.0344
0.4860 0.0141

)
;

B(1,1) = B(1,2) = 0; b0 =
(

0.5948
0.2769

)
.

(48)

We also used the special case of the model introduced in Example 2.2 to fit the data with
m = 2, m = 3, and m = 4. It is found that increasing the dimension of the model does
not help improving the fit much. This indicates that it is unreasonable to assume that the
matrices {Bh, h ∈ C0} are proportional and it verifies the statement in David Cummins and
Wiltbank (1983) that the marginal distributions of the number of the two types of events
seem to come from different distribution families.
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6 Future Research

(1) While the computation for observations of the form {Y = y}, {Y ≤ y}, and their
mixed case can be done in a straightforward manner, the computation for observation
of the form {Y ≥ y} (and its mixed cases) is much more involved and tedious. How
to design the computation procedure for such cases is an interesting issue for future
research. More generally, how to do parameter estimation under general conditions is
a challenging issue.

(2) Our numerical examples demonstrate that the EM-algorithm generates better solutions
with respect to the likelihood function or the distance between distributions, if the
phase parameter m increases. This observation is intuitive since, if m increases, one
does not lose any of the original parameters. Yet a formal proof would be an interesting
issue for future research. However, if there are local maxima, the initial values matters,
as in the example in Section 5.1.

(3) In our numerical experiments, most of the final estimates produced by the EM-
algorithm have the bi-diagonal form. Thus, the initial matrices of the EM-algorithm
may be set to have the bi-diagonal structure, which may simplify the algorithm
significantly.

Appendix A

Writing βm = 1 − ∑m−1
i=1 βi and (b0)i = 1 − ∑

h∈C0∪{0}
∑m

j=1(Bh)(i,j), the loglikelihood
function corresponding to Eq. 37 can be expressed as:

L(θ , x) =
m−1∑
j=1

ln(βj )Dj + ln

(
1 −

m−1∑
i=1

βi

)
Dm

+
∑

h∈C0∪{0}

m∑
i=1

m∑
j=1

ln((Bh)(i,j))N(i,j),h (49)

+
m∑

i=1

⎛
⎝ln

⎛
⎝1 −

∑
h∈C0∪{0}

m∑
j=1

(Bh)(i,j)

⎞
⎠

⎞
⎠Ni,0.

Taking derivative with respect to (Bh)(i,j) and setting to zero, one obtains

N(i,j),h

(Bh)(i,j)

= Ni,0

1 − ∑
h∈C0∪{0}

∑m
j=1(Bh)(i,j)

≡ �i. (50)

To identify �i , we rewrite the above equation as

�i = Ni,0

1 − ∑
h∈C0∪{0}

∑m
j=1

N(i,j),h
�i

, (51)

which leads to

�i = Ni,0 +
∑

h∈C0∪{0}

m∑
j=1

N(i,j),h = Ni (52)

Combining Eqs. 50 and 52, we obtain that

(B̂h)(i,j) = N(i,j),h

Ni

. (53)
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Derivations of other quantities are similar and omitted.

Appendix B

First, we note that
∑

h∈C0∪{0} wh = 1 and Be + b0 = e. Similar to general case in
Appendix A, we get

L(θ , x) =
m−1∑
i=1

ln(βi)Di + ln

⎛
⎝1 −

m−1∑
j=1

βj

⎞
⎠ Dm

+
∑

h∈C0∪{0}

m∑
i=1

m∑
j=1

ln(whB(i,j))N(i,j),h (54)

+
⎛
⎝ m∑

i=1

⎛
⎝ln

⎛
⎝1 −

m∑
j=1

B(i,j)

⎞
⎠

⎞
⎠Ni,0

⎞
⎠ .

Taking derivative with respect to B(i,j) and setting to zero, we obtain

∑
h∈C0∪{0} N(i,j),h

B(i,j)

=
∑

h∈C0∪{0} Ni,0

1 − ∑m
j=1 B(i,j)

≡ �i, (55)

which leads to �i = N(i,0) + ∑m
j=1

∑
h∈C0 N(i,j),h = Ni. Thus B̂(i,j) = N(i,j)/Ni , where

N(i,j) = ∑
h∈C0 N(i,j),h. The formula for wh can be obtained similarly.

Appendix C

In this appendix, for the case with K = 2, we summarize formulas for computing
the expectations under four types of conditions: i) {Y1 = y1, Y2 = y2}; ii) {Y1 =
y1, Y2 ≥ y2}; iii) {Y1 ≥ y1, Y2 = y2}; and iv) {Y1 ≥ y1, Y2 ≥ y2}. For this case,

 = {(0, 0), (0, 1), (1, 0), (1, 1)}, and

�(0,0)(y) = {u : u ≤ y};
�(0,1)(y) = {u : u1 = 0, 1, ..., y1; u2 = y2 + 1};
�(1,0)(y) = {u : u1 = y1 + 1;u2 = 0, 1, ..., y2};
�(1,1)(y) = {(y1 + 1, y2 + 1)}.

(56)

a) α related vectors:

• For condition {Y1 = y1, Y2 = y2}, we have

α(0,0)(0) = β(I − B0)
−1;

α(0,0)(y) = ∑
h∈C0: h≤y

α(0,0)(y − h)Bh(I − B0)
−1, if y �= 0. (57)
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• For condition {Y1 = y1, Y2 ≥ y2}, we have

α
(0,1)
≥ (0) = β

(
I − B0 − ∑

h∈C0: h1=0
Bh

)−1

;

α
(0,1)
≥ ((y1, 0)) =

( ∑
h∈C0: 1≤h1≤y1

α
(0,1)
≥ ((y1 − h1, 0))Bh

)

·
(

I − B0 − ∑
h∈C0: h1=0

Bh

)−1

, if y1 ≥ 1;

α
(0,1)
≥ (y) =

( ∑
h∈C0: h1≤y1

α
(0,1)
≥ ((y − h)+))Bh

)
(I − B0)

−1, if y2 ≥ 1.

(58)

• For condition {Y1 ≥ y1, Y2 = y2}, formulas for α
(1,0)
≥ (y) are symmetric to that of

α(0,1)≥(y).
• For condition {Y1 ≥ y1, Y2 ≥ y2}, we have

α
(1,1)
≥ (0) = β

(
I − B0 − ∑

h∈C0
Bh

)−1

;

α
(1,1)
≥ (y) =

( ∑
h∈C0: (y−h)+�=y

α
(1,1)
≥ ((y − h)+))Bh

)

·
(

I − B0 − ∑
h∈C0: (y−h)+=y

Bh

)−1

, if y �= 0.

(59)

b) pY related vectors:

• For condition {Y1 = y1, Y2 = y2}, we have

p(0,0)
Y (0) = (I − B0)

−1b0;
p(0,0)

Y (y) = ∑
h∈C0: h≤y

(I − B0)
−1Bhp(0,0)

Y (y − h), if y �= 0. (60)

• For condition {Y1 = y1, Y2 ≥ y2}, we have

p(0,1)
Y,≥ (0) =

(
I − B0 − ∑

h∈C0: h1=0
Bh

)−1

b0;

p(0,1)
Y,≥ ((y1, 0)) =

(
I − B0 − ∑

h∈C0: h1=0
Bh

)−1

·
( ∑

h∈C0: 1≤h1≤y1

Bhp(0,1)
Y,≥ ((y1 − h1, 0))

)
, if y1 ≥ 1;

p(0,1)
Y,≥ (y) = (I − B0)

−1

( ∑
h∈C0: h1≤y1

Bhp(0,1)
Y,≥ ((y − h)+))

)
, if y2 ≥ 1.

(61)

• For condition {Y1 ≥ y1, Y2 = y2}, formulas for p(1,0)
Y,≥ (y) are symmetric to that of

p(0,1)
Y,≥ (y).
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• For condition {Y1 ≥ y1, Y2 ≥ y2}, we have

p(1,1)
Y,≥ (0) =

(
I − B0 − ∑

h∈C0

Bh

)−1

b0;

p(1,1)
Y,≥ (y) =

(
I − B0 − ∑

h∈C0: (y−h)+=y
Bh

)−1

·
( ∑

h∈C0: (y−h)+�=y
Bhp(1,1)

Y,≥ ((y − h)+))

)
, if y �= 0.

(62)

c) Conditional expectataions

• For condition {Y1 = y1, Y2 = y2}, we have

E[Di |Y = y] = 1
βp(0,0)

Y (y)
βip

(0,0)
Y,i (y);

E[Ni |Y = y] = 1
βp(0,0)

Y (y)

∑
u: u≤y

α
(0,0)
i (u)p

(0,0)
Y,i (y − u);

E[N(i,j),0|Y = y] = 1
βp(0,0)Y (y)

∑
u: u≤y

α
(0,0)
i (u)(B0)(i,j)p

(0,0)
Y,j (y − u);

E[N(i,j),h|Y = y] = 1
βp(0,0)Y (y)

∑
u: u≤y−h

α
(0,0)
i (u)(Bh)(i,j)p

(0,0)
Y,j (y − u − h);

E[Ni,0|Y = y] = 1
βp(0,0)Y (y)

α
(0,0)
i (y)(b0)i .

(63)
• For condition {Y1 = y1, Y2 ≥ y2}, we have

E[Di |Y1 = y1, Y2 ≥ y2] = 1
βp(0,1)

Y ,≥(y)
βip

(0,1)
Y,i (y);

E[Ni |Y1 = y1, Y2 ≥ y2] = 1
βp(0,1)

Y (y)

( ∑
u: u≤y

α
(0,0)
i (u)p

(0,1)
Y,≥,i (y − u)

+
y1∑

u1=0
α

(0,1)
≥,i ((u1, y2 + 1))p

(0,1)
Y,≥,i ((y1 − u1, 0))

)
;

E[N(i,j),0|Y1 = y1, Y2 ≥ y2] = 1
βp(0,1)

Y (y)

( ∑
u: u≤y

α
(0,0)
i (u)(B0)(i,j)p

(0,1)
Y,≥,j (y − u)

+
y1∑

u1=0
α

(0,1)
≥,i ((u1, y2 + 1))(B0)(i,j)p

(0,1)
Y,≥,j ((y1 − u1, 0))

)
;

E[N(i,j),h|Y1=y1,Y2 ≥y2]= 1
βp(0,1)

Y (y)

( ∑
u: u≤y−h

α
(0,0)
i (u)(Bh)(i,j)p

(0,1)
Y,≥,j (y−u−h)

+
y1−h1∑
u1=0

α
(0,1)
≥,i ((u1, y2 − h2 + 1))(Bh)(i,j)p

(0,1)
Y,≥,j ((y1 − h1 − u1, 0))

)
;

E[Ni,0|Y1 = y1, Y2 ≥ y2] = 1
βp(0,1)

Y (y)
α

(0,1)
≥,i (y)(b0)i .

(64)
• The case with {Y1 ≥ y1, Y2 = y2} is symmetric to the case with {Y1 = y1,

Y2 ≥ y2}.
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• For condition {Y1 ≥ y1, Y2 ≥ y2}, we have

E[Di |Y1 ≥ y1, Y2 ≥ y2] = 1
βp(1,1)

Y (y)
βip

(1,1)
Y,≥,i (y);

E[Ni |Y1 ≥ y1, Y2 ≥ y2] = 1
βp(1,1)

Y (y)

( ∑
u: u≤y

α
(0,0)
i (u)p

(1,1)
Y,≥,i (y − u)

+
y1∑

u1=0
α

(0,1)
≥,i ((u1, y2 + 1))p

(1,1)
Y,≥,i ((y1 − u1, 0))

+
y2∑

u2=0
α

(1,0)
≥,i ((y1 + 1, u2))p

(1,1)
Y,≥,i ((0, y2 − u2))

+α
(1,1)
≥,i ((y1 + 1, y2 + 1))p

(1,1)
Y,≥,i ((0, 0))

)
;

E[N(i,j),0|Y1 ≥ y1, Y2 ≥ y2] = 1
βp(1,1)

Y (y)

( ∑
u: u≤y

α
(0,0)
i (u)(B0)(i,j)p

(1,1)
Y,≥,j (y − u)

+
y1∑

u1=0
α

(0,1)
≥,i ((u1, y2 + 1))(B0)(i,j)p

(1,1)
Y,≥,j ((y1 − u1, 0))

+
y2∑

u2=0
α

(1,0)
≥,i ((y1 + 1, u2))(B0)(i,j)p

(1,1)
Y,≥,j ((0, y2 − u2))

+α
(1,1)
≥,i ((y1 + 1, y2 + 1))(B0)(i,j)p

(1,1)
Y,≥,j ((0, 0))

)
;

E[N(i,j),h|Y1≥y1,Y2 ≥y2]= 1
βp(1,1)

Y (y)

( ∑
u: u≤y−h

α
(0,0)
i (u)(Bh)(i,j)p

(1,1)
Y,≥,j (y−u−h)

+
y1−h1∑
u1=0

α
(0,1)
≥,i ((u1, y2 − h2 + 1))(Bh)(i,j)p

(0,1)
Y,≥,j ((y1 − h1 − u1, 0))

+
y2−h2∑
u2=0

α
(1,0)
≥,i ((y1 − h1 + 1, u2))(Bh)(i,j)p

(1,1)
Y,≥,j ((0, y2 − h2 − u2))

+α
(1,1)
≥,i ((y1 − h1 + 1, y2 − h2 + 1))(Bh)(i,j)p

(1,1)
Y,≥,j ((0, 0))

)
;

E[Ni,0|Y1 ≥ y1, Y2 ≥ y2] = 1
βp(1,1)

Y (y)
α

(1,1)
≥,i (y)(b0)i .

(65)
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