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a b s t r a c t

Two GI/M/1 type Markov chains associated with the queue length are often used in ana-
lyzing the discrete timeMAP/PH/K queue. The first Markov chain is introduced by tracking
service phases for servers; a method we call TPFS. The transition probability matrix of the
Markov chain can be constructed in a straightforwardmanner. The secondMarkov chain is
introduced by counting servers for phases; which we call CSFP. An algorithm is developed
for the construction of the transition probability matrix of the secondMarkov chain, which
is the main contribution of this paper. Whereas the construction of the matrices for the
case of continuous time is available in the literature, it is not available for the discrete time
case. The effort in constructing the matrices for the discrete time case is extensively more
involved than for the continuous time case. Some basic properties of the constructed tran-
sition blocks are shown. We demonstrate that for queueing systems with a large number
of servers and many service phases, there is a considerable saving in the matrix sizes. For
example, when those values are 30 and 2, respectively, the block size for TPFS is more than
3 × 107 times that of CSFP; a major saving.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Queueing systems are very pervasive in life and analysts are continuously developing mathematical tools for analyzing
them. Surprisingly enough, despite the fact that queueing problems have been with us for a very long time and documen-
tation of formal mathematical tools for analyzing them have been known for more than 105 years, some queueing systems
are still difficult to analyze. Even though queueing systems could be in the form of a network, usually a decomposition of
the system into a set of connected single nodes queues seems a very popular and reasonably approximating approach for
analyzing them. When considering single node systems, however, the number of parallel servers involved in the system is
usually more than one, especially in telecommunication systems where queueing models are receiving more significant at-
tention these days. Multiserver queues are a major type of queueing models encountered in real life situations especially in
telecommunications. For example in wireless communications we are usually dealing with multiple channels, hence mul-
tiserver systems. Unless the service time of each channel follows the exponential distribution or geometric distribution,
in the discrete time case, analyzing such multichannel systems is usually quite involved especially because the associated
transition block matrices, when usingmatrix analytical methods (MAM), could be huge in size and complicated to generate.
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As pointed out by Yue and Matsumoto [1], the modeling of discrete-time, multimedia communication systems are more
complex than that of continuous-time systems because multiple state changes can occur from one time-unit to the next.
This challenge has limited telecommunication analysts to using geometric distributions instead of actual distributions that
more properly represent the service systems when dealing with discrete time systems. In fact it is very common for re-
searchers to use continuous time models as alternative to discrete-time ones in order to avoid the challenges. The goal of
this paper is to come up with very efficient methods for analyzing multiserver queues without restricting the service time
distributions to the geometric distribution.

Telecommunication systems these days are studied in discrete time more than in continuous time [2]. This is mainly
because the systems are now more digital than analog. However, with this more realistic system representation comes
some additional price, that of computational aspects. As such, systems that aremore appropriatelymodeled as theMAP/PH/K
queue are approximated byMAP/Geo/K system, or even asMAP/D/K system, in order to cut down the computational efforts
required. In this paper we study the MAP/PH/K system and show how to get around one of the challenges involved in its
analysis. Analyzing this system using the MAM approach leads to a GI/M/1 structure with very huge block matrices [3,4].
For example, if the MAP is of order ma, the PH of order ms, then we could have block matrices of size mamK

s , if we record
the phases of each server that is busy; a method we call Track-Phase-for-Server (TPFS). Rather we develop a procedure
that we call Count-Server-for-Phase (CSFP), which involves keeping the count of the number of busy servers in each phase.
This reduces the block sizes to dimension L = ma(K + ms − 1)!/(K !(ms − 1)!). For large ms and K , L is much smaller
than mamK

s . However constructing transition blocks for this case is very involved and that is the contribution of this paper.
Surprisingly many researchers [5,6] have mentioned it in their papers as a way to get around the size issue. Ramaswami [7]
did present an algorithm for constructing the block matrices of the generator matrix for the case of continuous time (also
see [8]). However, there is no documentation until now on how to construct the block matrices for the discrete time case.
While the construction of the transition blocks for the continuous time case is not straightforward, the construction process
for the discrete time case is even more involved due to the fact that several events can occur simultaneously in discrete
time, as pointed out earlier. The process for constructing the block matrices for CSFP for the discrete time is quite involved.
Given that discrete time models are more relevant these days when it comes to applications to telecommunications, the
contribution of this paper is on how to construct the transition blocks.

The remainder of the paper is organized as follows. In Section 2, we define the parameters for the discrete timeMAP/PH/K
queue. In Sections 3 and 4, we develop algorithms for constructing transition probability matrices of the discrete time
MAP/PH/K queue for the two types of scenarios, respectively. Themain contribution of this paper is the algorithm developed
in Section 4. Section 5 presents a numerical example to compare the two approaches. Section 6 concludes the paper.

2. Discrete time MAP/PH/K queue

The queueing model under consideration has a single queue and K identical servers. Customers arrive according to a
discrete time Markovian arrival process. All customers join a single queue upon arrival. The service discipline is work-
conserving (e.g., first-come-first-served, last-come-first-served and non-preemption, random order, etc.) The service times
have the same phase-type distribution. The arrival process and service times are defined specifically as follows.

(i) Customers arrive according to discrete time Markovian arrival process (D0,D1), where D0 and D1 are square matrices
of order ma. Matrices D0 and D1 are nonnegative. Let D = D0 + D1, which is a stochastic matrix (i.e., De = e). We
assume that D is irreducible. Then D defines an irreducible discrete time Markov chain. Let Ia(t) be the state (phase)
of the discrete time Markov chain associated with D, at time t . Then {Ia(t), t = 0, 1, 2, . . .} is an irreducible Markov
chain, called the underlying Markov chain. Let θa be the stationary distribution of {Ia(t), t = 0, 1, 2, . . .}. Then θa is the
unique solution to linear system θaD = θa and θae = 1, where e is the column vector with all elements being one. The
(average) arrival rate can be obtained as λ = θaD1e. For more aboutMAPs, readers are referred to [9,10].

(ii) All customers join a single queue waiting for service. There are K identical servers. When a server becomes available,
a customer in the waiting queue (if there is any) is selected, according to the service discipline, to enter the server for
service. If an arriving customer finds an idle server, the customer enters the server for service upon arrival.

(iii) The service time of each customer has a discrete time phase-type distribution with PH-representation (β, S) of order
ms. We assume that βe = 1, i.e., the workload of a customer is always positive. Let S0 = e − Se. We assume that
S + S0β is irreducible, i.e., the PH-representation (β, S) is PH-irreducible. Let θs = (θs,1, θs,2, . . . , θs,ms) be the row
vector satisfying θs(S + S0β) = θs and θse = 1. Since the PH-representation is irreducible, θs is the unique solution to
the linear system. The mean work-load is given by β(I − S)−1e. It is well-known that θsS0 = 1/(β(I − S)−1e), which is
called the service rate and is denoted as µ. See [3] for more about phase-type distributions.

In Sections 3 and 4, we introduce two GI/M/1 type Markov chains associated with the number of customers in the
queueing system. Then we develop methods for constructing transition probability matrices for the Markov chains,
respectively. The track-phase-for-server approach in Section 3 is straightforward. However, sizes of the transition blocks
increase exponentially in K and ms. Sizes of the transition blocks obtained in Section 4 using the count-server-for-phase
approach are much smaller than that of the blocks in Section 3.
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3. The track-phase-for-server (TPFS) approach

We define the following random variables to represent the queueing system. Define

• q(t): the number of customers in the queueing system at time t .
• Is,k(t): the phase of the underlying Markov chain of the service process of server k at time t , if the server is working;

otherwise, Is,k(t) = 0, for k = 1, 2, . . . , K . We note that the kth server is not referred to a specific physical server. Since
all K servers are identical, assigning a different server to be the kth server at a different time does not change the results.

We define a process {(q(t), Ia(t), Is,1(t), . . . , Is,min{q(t),K}(t)), t ≥ 0}. It is easy to see that {(q(t), Ia(t), Is,1(t), . . . ,
Is,min{q(t),K}(t)), t ≥ 0} is a discrete time Markov chain. We call q(t) the level variable and (Ia(t), Is,1(t), . . . , Is,min{q(t),K}(t))
the phase variable. It is also easy to see that q(t) increases at most by one or decreases at most by K at transitions and vector
(Ia(t), Is,1(t), . . . , Is,min{q(t),K}(t)) takes a finite number of values. Then {(q(t), Ia(t), Is,1(t), . . . , Is,min{q(t),K}(t)), t ≥ 0} is a
GI/M/1 type Markov chain. The objective of this section is to construct the transition blocks in the transition probability
matrix of the Markov chain, which has the following structure:

PTPFS =



A0,0 A0,1
A1,0 A1,1 A1,2
...

. . .
. . .

. . .

AK−1,0 · · · AK−1,K−2 AK−1,K−1 AK−1,K
AK ,0 AK ,1 · · · AK ,K−1 AK ,K A0

AK+1,1 AK+1,2
. . . AK+1,K A1 A0

. . .
. . .

. . .
. . .

. . .
. . .

A2K−1,K−1 A2K−1,K
. . . A2 A1 A0

A2K ,K AK · · · A2 A1 A0
AK+1 AK · · · A2 A1 A0

. . .
. . .

. . .
. . .

. . .
. . .



, (1)

where {Ak,j, k = 0, 1, . . . , j = 0, 1, . . . , k+1} and {A0, A1, . . . , AK+1} are transition blocks between levels. Next, we develop
an algorithm for constructing thosematrices. By utilizing the Kronecker-product operation ofmatrices, the transition blocks
can be obtained as follows.

Proposition 3.1. For the discrete time MAP/PH/K queue, the transition blocks in PTPFS are

Ak,0 = D0 ⊗ Sk,0, for k = 0, 1, 2, . . . , K ;

Ak,j = D0 ⊗ Sk,j + D1 ⊗ Sk,j−1 ⊗ β, for k = 1, . . . , K − 1, j = 1, 2, . . . , k;
Ak,k+1 = D1 ⊗ Sk,k ⊗ β, for k = 0, 1, . . . , K − 1;

Ak,k−K = D0 ⊗ Sk,0 ⊗ β(⊗(k−K)), for k = K , K + 1, . . . ;

Ak,j = D0 ⊗ SK ,K−k+j ⊗ β(⊗(k−max{j,K}))
+ D1 ⊗ SK ,K−k+j−1 ⊗ β(⊗(k−max{j,K}+1)),

for k = K , K + 1, . . . , j = k − K + 1, k − K + 2, . . . , k;
Ak,k+1 = D1 ⊗ SK ,K , for k = K , K + 1, . . . ,

(2)

where Sk,j is the one step transition matrix beginning with k servers in service and ending with j servers still in service,

S0,0 = 1, Sk,0 = Sk−1,0 ⊗ S0, for k = 1, 2, . . . ;

Sk,j = Sk−1,j ⊗ S0 + Sk−1,j−1 ⊗ S, for k = 1, 2, . . . , j = 1, 2, . . . , k − 1;
Sk,k = Sk−1,k−1 ⊗ S, for k = 1, 2, . . . ;

(β)(⊗0)
= 1, (β)(⊗k)

= (β)(⊗(k−1))
⊗ β, for k = 1, 2, . . . ;

(3)

and

A0 = D1 ⊗ ŜK ,K ;

Ak = D0 ⊗ ŜK ,K+1−k + D1 ⊗ ŜK ,K−k, for k = 1, 2, . . . , K ;

AK+1 = D0 ⊗ ŜK ,0,

(4)



20 Q.-M. He, A.S. Alfa / Performance Evaluation 93 (2015) 17–26

where Ŝk,j is the one step transition matrix that, beginning with k server in service, (i) k − j servers complete and restart service
immediately, and (ii) j servers continue their current service,

Ŝ0,0 = 1, Ŝk,0 = Ŝk−1,0 ⊗ (S0β), for k = 1, 2, . . . , K ;

Ŝk,j = Ŝk−1,j ⊗ (S0β) + Ŝk−1,j−1 ⊗ S, for k = 1, 2, . . . , K , j = 1, 2, . . . , k − 1;

Ŝk,k = Ŝk−1,k−1 ⊗ S, for k = 1, 2, . . . , K .

(5)

In addition, the states in level q are given by {(q, ia, is,1, . . . , is,min{q,K}) : ia = 1, 2, . . . ,ma, is,k = 1, 2, . . . ,ms, k =

1, 2, . . . ,min{q, K}}, for q ≥ 0. The size of matrices {A0, A1, . . . , AK+1} is mamK
s . �

Note 3.1. Matrices {A0, A1, . . . , AK+1} can be defined as A0 = Ak,k+1, A1 = Ak,k, . . . , AK+1 = Ak,k−K , for any k ≥ 2K . The
interpretations of the elements of the matrices are different, but the analysis of the Markov chain and the queueing model
is similar. We use the construction given in Eqs. (4) and (5) for convenience.

Let A = A0 + A1 + · · · + AK+1.

Proposition 3.2. The matrix A is an irreducible transition probability matrix, i.e., Ae = e, and its stationary distribution is given
by θa ⊗ (θs)

(⊗K), where (θs)
(⊗K) is the Kronecker product of K vector θs. �

The property is useful for verifying computation programs. For the GI/M/1 type Markov chain, its stationary distribution
has a matrix-geometric solution (see [3]). In Section 5, we shall use the Markov chain PTPFS to compute the mean queue
length, which is useful in verifying the Markov chain to be constructed in Section 4.

Proposition 3.3. The Markov chain PTPFS is ergodic if and only if λ < Kµ.

Proof. From queueing point of view, the condition is intuitive. We present a technical proof. By [3], the irreducible GI/M/1
type Markov chain is positive recurrent if and only if

K+1
k=1

(k − 1)θa ⊗ (θs)
(⊗K)Ake > θa ⊗ (θs)

(⊗K)A0e, (6)

which is equivalent to
K+1

k=0 kθa ⊗ (θs)
(⊗K)Ake > 1. By routine calculations, we obtain

K+1
k=1

kθa ⊗ (θs)
(⊗K)Ake = θa ⊗ (θs)

(⊗K)


D0 ⊗

K
k=0

ŜK ,k + D ⊗

K
k=0

(K − k)ŜK ,k


e

= (θaD0e)


(θs)

(⊗K)


K

k=0

ŜK ,k


e


+ (θaDe)


K

k=0

(K − k)

(θs)

(⊗K)ŜK ,ke


= 1 − λ + Kµ


K−1
k=0


K − 1

k


(θsSe)k (θsS0)K−1−k


= 1 − λ + Kµ


θsSe + θsS0

K−1
= 1 − λ + Kµ, (7)

where we have used λ = θaD1e = 1 − θaD0e, (θs)
(⊗K) ŜK ,ke =


K
k


(θsSe)k (θsS0)K−k, and µ = θsS0. The proof is

completed. �

Define A∗(z) = A0 +zA1 +· · ·+zK+1AK+1,D∗(z) = D1 +zD0, and S∗(z) = S+zS0β. For z > 0, let ρA(z), ρD(z), and ρS(z)
be the Perron–Frobenius eigenvalue of A∗(z),D∗(z), and S∗(z) (i.e., the eigenvalue with the largest real part), respectively.

Proposition 3.4. A∗(z) = D∗(z) ⊗ (S∗(z))(⊗
K ) and ρA(z) = ρD(z)(ρS(z))K .

Proof. The first result is obtained as follows:

A∗(z) = D1 ⊗ ŜK ,K + z(D0 ⊗ ŜK ,K + D1 ⊗ ŜK ,K−1) + · · · + zKD0 ⊗ ŜK ,0

= (D1 + zD0) ⊗


ŜK ,K + zŜK ,K−1 + z2ŜK ,K−2 + · · · + zK ŜK ,0


= (D1 + zD0) ⊗


ŜK−1,K−1 + zŜK−1,K−2 + · · · + zK−1ŜK−1,0


⊗ (S + zS0β)

= (D1 + zD0) ⊗

S + zS0β

(⊗K)
. (8)

The second result is obtained from the first one. �
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4. The count-server-for-phase (CSFP) approach

In Section 3, the service process is represented by vector (Is,1(t), . . . , Is,min{q(t),K}(t)). In this section, we define another
random vector to represent the service process. Define
• ni(t): the number of servers whose service phase is i at time t , for i = 1, 2, . . . ,ms.

Since the service processes of servers can be represented by the same underlying discrete time Markov chain, vector
(n1(t), . . . , nms(t)) provides all information about the service process. Thus, the queueing process can be represented by the
GI/M/1 type Markov chain {(q(t), Ia(t), n1(t), . . . , nms(t)), t ≥ 0}. Next, we (i) characterize the state space of the Markov
chain; (ii) find its transition probability matrix; and (iii) find some stationary distribution related to the Markov chain.

Let Ω(q,ms) be the set of states of (n1(t), . . . , nms(t)), given that q(t) = q ≥ 0, which is called the level q. It is easy to
see that

Ω(q,ms) =


(n1, . . . , nms) : ni ≥ 0, i = 1, 2, . . . , ms,

ms
i=1

ni = min{q, K}


. (9)

Based on the number of servers whose service phase is ms, which can be 0, 1, . . . , and q, the states in Ω(q,ms) are
arranged into q + 1 subsets as follows:

Ω(q,ms) = {Ω(q,ms − 1) × {0}} ∪ {Ω(q − 1,ms − 1) × {1}} ∪ · · · ∪ {Ω(0,ms − 1) × {q}}. (10)
Then the state space of {(q(t), Ia(t), n1(t), . . . , nms(t)), t ≥ 0} can be obtained as

∞
q=0

({q} × {1, 2, . . . , ma} × Ω(q,ms)) . (11)

The number of states in level q ≥ K is

ma


K + ms − 1

ms − 1


= ma

(K + ms − 1)!
K !(ms − 1)!

. (12)

The transition probability matrix of {(q(t), Ia(t), n1(t), . . . , nms(t)), t ≥ 0}, denoted as PCSFP, has exactly the same
structure as that of PTPFS (see Eq. (1)) with transition blocks given as follows. Unlike the continuous time case, phase
transitions can occur simultaneously for the discrete time case. Thus, the construction of PCSFP is more involved than that of
the continuous time case. We begin our construction process with some observations on the state transition process. (Note:
phase is form = 1, 2, . . . ,ms; state is for {(q(t), Ia(t), n1(t), . . . , nms(t)), t ≥ 0}).

• Observation 1. The one-step phase transitions of services in individual servers are independent.

• Observation 2. The one-step phase transitions of service completions in individual servers are independent.

• Observation 3. The one-step phase transitions of the service processes and the arrival process are independent.

We defined the following matrices, for q,m, j, k ≥ 0,
• Pu,v{q, j,m|k} = Pu,v{Ω(q,m) : Ω(j,m)|k}: The one-step transition matrix from the set Ω(q,m) to Ω(j,m), given that

there are exactly k service completions, the transitions within the m phases are governed by S[1:m,1:m], and the initial
phases of the new services are determined by probabilities in vector u of size m or larger, and service completion is
determined by probabilities in vector v of sizem or larger. (Note that the number of new services is j + k − q.)

First, we construct Ak,j in PCSFP from {Pβ,S0{q, j,ms|k},D0,D1}.

Proposition 4.1. The transition probability blocks in PCSFP can be obtained as

(1) Ak,k+1 = D1 ⊗ Pβ,S0{k, k + 1,ms|0}, for k ≤ K − 1;

(2) Ak,k+1 = A0 = D1 ⊗ Pβ,S0{K , K ,ms|0}, for k ≥ K ;

(3) Ak,0 = D0 ⊗ Pβ,S0{k, 0,ms|k}, for k ≤ K ;

(4) Ak,k−K = D0 ⊗ Pβ,S0{K , k − K ,ms|K}, for K + 1 ≤ k ≤ 2K − 1;

(5) Ak,k−K = AK+1 = D0 ⊗ Pβ,S0{K , K ,ms|K}, for k ≥ 2K .

(6) Ak,j = D0 ⊗ Pβ,S0{k, j,ms|k − j} + D1 ⊗ Pβ,S0{k, j,ms|k − j + 1}, for k ≤ K , 1 ≤ j ≤ k;

(7) Ak,j = D0 ⊗ Pβ,S0{K ,min{j, K},ms|k − j} + D1 ⊗ Pβ,S0{k,min{j, K},ms|k − j + 1},

for K + 1 ≤ k ≤ 2K − 1, k − K + 1 ≤ j ≤ k;
(8) Ak,j = Ak−j+1 = D0 ⊗ Pβ,S0{K , K ,ms|k − j} + D1 ⊗ Pβ,S0{K , K ,ms|k − j + 1},

for 2K ≤ k, k − K + 1 ≤ j ≤ k.

(13)
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Proof. All expressions are obtained easily by definitions. �

To compute matrix Pβ,S0{q, j,ms|k}, based on Observations 1–3, we decompose changes of states into three categories:
(i) the service phase of a server entering the set {1, 2, . . . ,m} or a new service is initialized; (ii) phase transitions
within {1, 2, . . . ,m} (or no new service initialization and no service completion); and (iii) a service phase leaving the set
{1, 2, . . . ,m} or a service completion. For the three types of transitions, we define the following matrices:

• L+
u {q, q + j, m} = L+

u {Ω(q,m) : Ω(q + j, m)}: The one-step transition matrix from the set Ω(q,m) to Ω(q + j,m)
only due to the initialization of the service of j customers in phases {1, 2, . . . ,m}, given that the initial phase of the j new
customers are determined by probabilities in row vector u of sizem or larger.

• P{q,m} = P{Ω(q,m) : Ω(q,m)}: The one-step transition matrix from the set Ω(q,m) to Ω(q,m), given that the
transitions within them phases are governed by S[1:m,1:m]. (Note: that there is no transition into or going out of Ω(q,m).
Only phase changes within {1, 2, . . . ,m}.)

• L−
v {q + j, q, m} = L−

v {Ω(q + j,m) : Ω(q,m)}: The one-step transition matrix from the set Ω(q + j,m) to Ω(q,m)
only due to the transitions of the service phases of j customers out of phases {1, 2, . . . ,m}, given that the out-going
probabilities of j customers are determined by probabilities in column vector v of size m or larger (Note: that no other
type of phase change is considered.)

Each ofmatrices L+
u {q, q + j,m}, P{q,m}, and L−

v {q + j, q, m} is defined specifically for one type of transitions. Thus, their
components may not be transition probabilities. Nonetheless, by putting them together properly, the one-step transition
matrix Pβ,S0{q, j,ms|k} is obtained from {L+

u {q, q+ j, m}, P{q,ms}, L−
v {q+ j, q, m}}. Before we present the results, we have

a look at an example.
Consider a binomial distribution with parameters {n, a}. Suppose that a is the probability to leave the set {1, 2, . . . ,m}

in one transition. Then the probability that k customers leave the set {1, 2, . . . ,m} (and n − k stay within) is given by
ak(1 − a)n−kn!/(k!(n − k)!), which can be written as the product of {na, (n − 1)a, . . . , (n − k + 1)a} and {1/k!, (1 −

a)n−k/(n−k)!}. Intuitively, the decomposition can be explained by associating {na, (n−1)a, . . . , (n−k+1)a}with the one
step transitions of k out of n customers leaving the set {1, 2, . . . ,m}, and (1 − a)n−k/(n − k)! with all one step transitions
of the other n − k customers remaining in the set {1, 2, . . . ,m}.

Proposition 4.2. For given u and v, the following relationships hold among the matrices defined above:

(1) Pu,v{q, q,m|0} = P{q,m}, for q = 1, 2, . . . , K ;

(2) Pu,v{q, j,m|k} = L−

v {q, q − k,m}P{q − k,m}L+

u {q − k, j,m}, for k ≤ q ≤ k + j;

(3) L−

v {q + k, q,m} =
1
k!

q+1
j=q+k

L−

v {j, j − 1,m}, for k, q ≥ 0;

(4) L+

u {q, q + k,m} =

q+k−1
j=q

L+

u {j, j + 1,m}, for k, q ≥ 0.

(14)

Proof. Parts (1), (2), and (4) are obtained by definitions. Part (3) is also obtained by definition, plus the fact that the k leaving
customers (i.e., leaving the set {1, 2, . . . ,m}) are selected from q + k customers. Since the order of the k leaving customers
does not affect the probabilities, we must have the factor 1/k! in part (3). (Note: For part (4), the k new customers are not
selected from any set. Therefore, the factor 1/k! does not appear in part (4).) �

Next, we construct {L+
u {q, q + 1, m}, L−

v {q + 1, q, m}} from parameters {u, v}.

Proposition 4.3. For given u = (u1, . . . , um) and v = (v1, . . . , vm)′, the matrix L+
u {Ω(k,m) : Ω(k + 1,m)} and

L−
v {Ω(k + 1,m) : Ω(k,m)} can be obtained as

Ω(k + 1,m − 1) × {0} · · · Ω(0,m − 1) × {k + 1}

L+

u {k, k + 1,m} =

Ω(k,m − 1) × {0}
Ω(k − 1,m − 1) × {1}

...
Ω(1,m − 1) × {k − 1}

Ω(0,m − 1) × {k}



L+
u {k, k + 1,m − 1} umI

. . . umI
. . .

. . .

. . . umI
L+
u {0, 1,m − 1} um

 ; (15)
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and

Ω(k − 1,m − 1) × {0} · · · Ω(0,m − 1) × {k − 1}

L−

v {k, k − 1,m} =

Ω(k,m − 1) × {0}
Ω(k − 1,m − 1) × {1}

...

...
Ω(1,m − 1) × {k − 1}

Ω(0,m − 1) × {k}



L−
v {k, k − 1,m − 1}

vmI
. . .

. . .
. . .

. . .
. . .

(k − 1)vmI L−
v {1, 0,m − 1}

kvm


; (16)

and

L+

u {0, 1,m} = u[1:m]; L+

u {k, k + 1, 1} = u1;

L−

v {1, 0,m} = v[1:m]; L−

v {k + 1, k, 1} = (k + 1)v1.
(17)

Proof. All results are obtained by definition. Note that the size of vector u or v can be greater than m. Once m is given, we
only need the firstm elements of vectors u and v (i.e., u[1 : m] and v[1 : m]) in the construction of the matrices. �

Finally, we find P{k,m} recursively from system parameter S.

Proposition 4.4.

P{k,m} = P{k, k,m|0}
· · · Ω(q,m − 1) × {k − q} . . .

=

...
Ω(j,m − 1) × {k − j}

...


... · · ·

...
· · · PS[m,1:m−1],S[1:m−1,m]

{Ω(j,m − 1) × {k − j} : Ω(q,m − 1) × {k − q}} · · ·

... · · ·
...

 (18)

where 1 ≤ j, q ≤ k,

PS[m,1:m−1],S[1:m−1,m]
{Ω(j,m − 1) × {k − j} : Ω(q,m − 1) × {k − q}}

=

min{j,k−q}
l=max{0,j−q}

PS[m,1:m−1],S[1:m−1,m]
{j, q,m − 1|l}


k − j

k − q − l


(sm,m)k−q−l

=


min{j,k−q}

l=0

PS[m,1:m−1],S[1:m−1,m]
{j, q,m − 1|l}


k − j

k − q − l


(sm,m)k−q−l, if j ≤ q;

min{j,k−q}
l=j−q

PS[m,1:m−1],S[1:m−1,m]
{j, q,m − 1|l}


k − j

k − q − l


(sm,m)k−q−l, if j > q

(19)

and

P{0, m} = P{Ω(0,m) : Ω(0,m)} = 1;
P{1, m} = P{Ω(1,m) : Ω(1,m)} = S[1:m,1:m];

P{k, 1} = P{Ω(k, 1) : Ω(k, 1)} = sk1,1.
(20)

Note: Elements of S are denoted as si,j, i.e., S = (si,j). Matrix S[m,1:m−1] consists of elements in the mth row and 1 to m − 1
columns of S. Matrices S[1:m−1,m] and S[1:m,1:m] are defined similarly.

Proof. Although there is no customer entering or leaving the set {1, 2, . . . ,m}, there can be transitions between the phases
themselves. We first consider the transitions between {1, 2, . . . ,m − 1} and {m}. In this manner, the problem becomes
solving problems within the subset {1, 2, . . . ,m − 1}, which leads to the recursive formulas. In this case, among k − j
customerswho are originally in phasem, k−q− l customers, transit to phases in {1, 2, . . . ,m−1}. The number of selections
of the k − q − l customers is k − q − l out of k − j. The rest of the proof is straightforward. �
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Recall that A = A0 + A1 + · · · + AK+1. Next, we find the stationary distribution of A. Define vector φ as follows:

φ(n) =
K !

n1! · · · nms !

ms
j=1

θ
nj
s,j, for n = (n1, . . . , nms) ∈ Ω(K ,ms). (21)

The vector φ is a probability vector (i.e., φ ≥ 0 and φe = 1) since it can be considered as the probability mass function of a
multinomial distribution, i.e.,


n∈Ω(K ,ms)

φ(n) =


n∈Ω(K ,ms)

K !

n1! · · · nms !

ms
j=1

θ
nj
s,j =


ms
j=1

θs,j

K

= 1. (22)

The vector φ is can be constructed as follows:

(i) φ(0,m) = 1, for m = 1, 2, . . . ,ms, and φ(k, 1) = θ k
s,1/k!, for k = 0, 1, 2, . . . , K ;

(ii) φ(k,m) = (φ(k,m − 1), φ(k − 1,m − 1)θs,m, φ(k − 2,m − 1)θ2
s,m/2!, . . . , φ(0,m − 1)θ k

s,m/k!), form = 1, 2, . . . ,ms,
for k = 1, 2, . . . , K ; and

(iii) φ = K !φ(K ,ms).

In computation, we use ω(k,m) = k!φ(k,m) in the above procedure to improve accuracy.

Proposition 4.5. Matrix A = D ⊗

K
k=0 Pβ,S0{K , K ,ms|k}


, which is an irreducible transition probability matrix (stochastic

matrix), i.e., Ae = e, and its stationary distribution is given by θa ⊗ φ.

Proof. Since the PH-representation of the service workload is irreducible, the transition probability matrix is also
irreducible. In steady state, since the probability that the service phase of a server is j is θs,j, the probability that the service
state is n ∈ Ω(K ,ms) is given by φ(n). Thus, φ is the stationary distribution of the Markov chain associated with service
process of theK servers, assuming the servers areworking all the time. Then it is clear that θa⊗φ is the stationary distribution
of A. �

Proposition 4.6. The Markov chain PCSFP is ergodic if and only if λ < Kµ.

Proof. Similar to the proof of Proposition 3.3, we obtain

K+1
k=1

kθa ⊗ (θs)
(⊗K)Ake = 1 − λ + φ

K
k=1

kPβ,S0{K , K ,ms|k}e. (23)

The last part in Eq. (23) is the mean number of customers served by the K servers per unit time, which is Kµ. �

5. Numerical examples and discussion

While the steps for the computation of transition blocks in PTPFS is straightforward (see Proposition 3.1), they are more
involved for PCSFP. We outline the steps for PCSFP as follows.

1. Based on Propositions 4.2–4.4, construct P{k,m}.
1.1 Start from Proposition 4.4.
1.2 For each pair (u = S[m,1:m−1], v = S[1:m,1:m]), use Proposition 4.3 to construct L+

u {k, k + 1, m} and L−
v {k, k − 1, m};

1.3 For each pair (u = S[m,1:m−1], v = S[1:m,1:m]), use Proposition 4.2 and transition blocks obtained in step (1.2) to
construct Pu,v{q, j,m | k}, L+

u {q, q + k, m} and L−
v {q + k, q, m};

1.4 Go back to Proposition 4.4 to complete P{k,m}.
2. Based on Proposition 4.1, construct transition block Ak,j.

2.1 Start from Proposition 4.1. Choose u = β and v = S0.
2.2 Use Proposition 4.3 to construct L+

u {k, k + 1, m} and L−
v {k, k − 1, m};

2.3 Use Proposition 4.2 to construct Pu,v{q, j,m | k}, L+
u {q, q + k, m} and L−

v {q + k, q, m}; Note that Pu,v{q, q,m | 0} =

P{q,m} has been obtained from Step (1).
2.4 Go back to Proposition 4.1 to complete Ak,j.

We consider anMAP/PH/K queue with following parameters:

ma = 2, D0 =


0.2 0.3
0.1 0.4


, D1 =


0.4 0.1
0.5 0.0


;

ms = 2, β = (0.1, 0.9), S =


0.2 0.2
0.1 0.7


.

(24)
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Table 1
Size of transition blocks A0, A1, . . . , AK+1 and the mean queue length.

K 2 4 6 8 10 15 20 30
TPFS 8 32 128 512 2048 65,536 2097,152 2147,483,648
CSFP 6 10 14 18 22 32 42 62
E[q] 26.757 1.9968 1.9550 1.9545 1.9545 1.9545 1.9545 1.9545

Using the algorithms developed in Sections 3 and 4, we can construct the transition probability matrices PTPFS and PCSFP.
The size of transition blocks {A0, A1, . . . , AK+1}, as a function of the number of servers K , is given in Table 1 (see rows 2 and
3 in Table 1). The distribution of the queue length can be found by using the matrix-geometric solution for the stationary
distribution of the GI/M/1 type Markov chains PTPFS and PCSFP (see [3]). We also present the mean queue length E[q], as a
function of K , in Table 1.

It is clear that the CSFP approach is significantly better than the TPFS approachwith respect to the size of transition blocks.
Therefore, the extra effort in the construction of PCSFP makes it possible to analyze the queueing system by matrix-analytic
methods even if K is not small.

Themean queue length E[q] can be obtained from thematrix-geometric solution of the GI/M/1 typeMarkov chains. First,
we find the rate matrix R that is the minimal nonnegative solution to

R =

K+1
k=0

RkAk. (25)

Then, iteratively, we compute {RK , RK−1, . . . , R1} as follows: Let RK+k = R, for k = 1, 2, . . . , K , and

Rk = Ak−1,k


I − Ak,k −

K
j=1


j

t=1

Rk+t


Ak+j,k

−1

, for k = K , K − 1, . . . , 2, 1. (26)

Denote by π = (π0, π1, π2, . . .) the stationary distribution of PTPFS or PCSFP, which is partitioned according to the
level variable q(t). It is well-known that π has matrix-geometric solution [3]: π0, π1 = π0R1, . . . ,πK = πK−1RK , and
πn = πKRn−K , for n = K + 1, . . . , where π0 can be obtained by solving the following linear system:

π0 = π0


A0,0 +

K
j=1


j

t=1

Rt


Aj,0


;

π0


e +

K−1
j=1


K

t=1

Rt


e +


j

t=1

Rt


(I − R)−1e


= 1.

(27)

Then the mean queue length can be found as

E[q] = π0


K−1
j=1

j


j

t=1

Rt


e + π0


K

t=1

Rt


(K(I − R) + R) (I − R)−2e. (28)

6. Conclusions

It is clear that using CSFP is more efficient than using TPFS when it comes to computing the matrices R or G, the queue
length and all associated measures, especially when the dimensions of the PH distributions for service, dimension for the
MAP, and the number of servers are not small.When those numbers are small the difference in size of thematrices and hence
computational efficiency is not amajor concern. However onewill also notice that the blockmatricesmay bemuch easier to
construct for the TPFS. But not only that,when it comes to computing the decay rate for studying the tail distribution of queue
length or waiting time, there is still some advantage to using the TPFS approach. This is because the decay rate is simply
the Perron–Frobenius eigenvalue of matrix R. By Eq. (25) and Proposition 3.4, it can be shown that the Perron–Frobenius
eigenvalue of R is the unique solution of z = ρD(z)(ρS(z))K in (0, 1), if λ < Kµ. On the other hand, the CSFP approach does
not lead to such an explicit and simple equation for the decay rate.
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