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Abstract

In this paper we analyze a tollbooth tandem queueing problem with an infinite number of
servers. A customer starts service immediately upon arrival but cannot leave the system
before all customers who arrived before him/her have left, i.e. customers depart the system
in the same order as they arrive. Distributions of the total number of customers in the
system, the number of departure-delayed customers in the system, and the number of
customers in service at time t are obtained in closed form. Distributions of the sojourn
times and departure delays of customers are also obtained explicitly. Both transient and
steady state solutions are derived first for Poisson arrivals, and then extended to cases
with batch Poisson and nonstationary Poisson arrival processes. Finally, we report several
stochastic ordering results on how system performance measures are affected by arrival
and service processes.
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1. Introduction

In this paper we consider an infinite-sever queueing system where customers must depart in
the order they arrive. This model is motivated by the tandem tollbooth in transportation system,
where servers are ordered in series and an arriving vehicle needs to be served by one and only
one server (see Hall and Daganzo (1983)), but cannot leave until all vehicles ahead of it have
departed. Hence, we refer to this queueing system as an infinite-server tollbooth tandem queue.

The tollbooth tandem queue is similar to the classical tandem queue with infinite stages
and no waiting space between stages (Papadopoulos and O’Kelly (1993)) as both have an
infinite number of servers in series. But it differs in that each customer only requires service
in one stage (server). The tollbooth tandem queue is similar to the classical M/G/∞ queue
(Ross (2010, Chapter 5), and Eliazar (2007)) in that there are an infinite number of servers
available so that no customer has to wait for service, but it differs from the classical M/G/∞
queue in that servers are lined up in serial, not in parallel; hence, a customer cannot leave the
system unless all customers who arrived earlier have completed service. The tollbooth tandem
queue also differs from some of the studies on M/G/∞ queues with synchronized departures,

Received 17 December 2013; revision received 22 November 2014.
∗ Postal address: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109,
USA. Email address: xchao@umich.edu
∗∗ Postal address: Department of Management Sciences, University of Waterloo, 200 University Avenue West,
Waterloo, ON N2L 3G1, Canada. Email address: q7he@uwaterloo.ca
∗∗∗ Postal address: Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern
California, Los Angeles, CA 90089, USA. Email address: smross@usc.edu

941



AUTHOR(S)’S PERSONAL PDF OFFPRINT COPY

942 X. CHAO ET AL.

for example, Zazanis (2004), studied an infinite server queue where departures are synchronized
by a given point process; in the tollbooth tandem queue, the departure of a customer is affected
by departures of the customers ahead of him/her which depends on the state of the system. The
tollbooth tandem queue is also different from the asymmetric simple inclusion process (ASIP)
studied by, for example, Reuveni et al. (2012), (2014), in which each server opens its gate to
accept customers from an up-stage server according to a Poisson process. In this paper we
shall obtain all the quantities of interest related to this tollbooth tandem queue, both transient
and steady state solutions, in closed form, when all servers are homogeneous. The case of
finite heterogeneous servers has been studied by He and Chao (2014) using a matrix-geometric
computational method.

The tollbooth tandem queue can be applied in the analysis of a one-way single-lane highway
with no overtaking. Consider a segment of the single-lane highway of length, say H , and
vehicles enter the starting point of this segment according to a Poisson process with rate λ.
Each vehicle entering is attached a random value V representing the velocity of this vehicle,
with the proviso that whenever the vehicle encounters a slower moving vehicle it must decrease
its velocity to that of the slower moving vehicle. Let Vi denote the velocity of the ith
entering vehicle and suppose V1, V2, . . . , are independent and identically distributed (i.i.d.)
with distribution function V (t). Therefore, if there is no vehicle on the road then the time it
takes vehicle i to pass this road segment is H/Vi with distribution function G(t) = 1−V (L/t).
It is not hard to see that the distribution of the number of vehicles on this segment of the highway
is precisely that of the number of customers in the tollbooth tandem queue described above.
Therefore, using the results for the tollbooth tandem queue derived in this paper, we can obtain
such quantities as the distribution of the number of vehicles on the segment of interest on the
road, the distribution of vehicle traversal time on this road segment, and others.

We assume that the customer service time has an arbitrary distribution. We are concerned
with the probability distributions of the following quantities of interest:

(i) Q(t)—the number of customers in the system at time t ;

(ii) Qd(t)—the number of departure-delayed customers in the system (who finished service
but cannot depart) at time t ;

(iii) D(t)—the number of departures by time t ;

(iv) W(t)—the time spent in the system by a customer arrived at time t (i.e. the sojourn time);

(v) Wd(t)—the departure delay (time waiting to depart after finishing service) of a customer
arrived at time t ; and

(vi) L(t)—the number of customers left behind by a departing customer who arrived at time t .

We first consider the case when the customer arrival process is Poisson, and obtain closed
form solutions for (i)–(vi), as well as the corresponding steady state distributions, in Section 2.
Then, in Section 3, we extend the results to the cases of batch Poisson and nonhomogeneous
Poisson arrival processes. Some stochastic ordering results are reported in Section 4 before we
conclude the paper in Section 5.

2. The M/G/∞ tollbooth tandem queue

We consider a tandem queue with an infinite number of servers in series, denoted by 1, 2, . . . .

All servers are identical, and there is no waiting space between servers. Customers arrive
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according to a Poisson process with rate λ. An arriving customer joins server j if server j − 1
is occupied, but all servers with indices j or higher are available. Thus, any arriving customer
receives service immediately upon its arrival. On the other hand, a customer finishing service
on server j can leave the queueing system only if there are no customers occupying servers
1, 2, . . . , j − 1. That is, a customer may have to wait on server j until all customers ahead of
him/her are cleared, leading to a batch departure process.

Denote by N(t) the number of customers who arrived up to time t with N(0) = 0. Let
S0 = 0, and let Si be the arrival time of the ith customer, i = 1, 2, . . . . Let the service time
distribution for all customers (servers) be denoted by G(·). Let Ḡ(t) = 1 − G(t). Let Xi

be the service time of the ith customer, i = 1, 2, . . . , and X a generic service time, then
E[X] = ∫ ∞

0 Ḡ(s) ds. Throughout this paper we assume that the queue is empty at time 0.

Theorem 1. For all t ≥ 0, we have

P{Q(t) = 0} = exp

(
−λ

∫ t

0
Ḡ(s) ds

)
, (1)

P{Q(t) = n} = λ

∫ t

0

(λu)n−1

(n − 1)!Ḡ(u) exp

(
−λ

(
u +

∫ t

u

Ḡ(s) ds

))
du, n > 0, (2)

P{Qd(t) = 0} = exp

(
−λ

∫ t

0
Ḡ(s) ds

)

+ λ

∫ t

0
Ḡ(u) exp

(
−λ

(∫ u

0
G(s) ds +

∫ t

u

Ḡ(s) ds

))
du, (3)

P{Qd(t) = n} = λ

∫ t

0

(λ
∫ u

0 G(s) ds)n

n! Ḡ(u)

× exp

(
−λ

(∫ u

0
G(s) ds +

∫ t

u

Ḡ(s) ds

))
du, n > 0, (4)

P{D(t) = n} = λ

∫ t

0

(λ
∫ t

u
G(s) ds)n

n! Ḡ(u)e−λ(t−u) du

+ (λ
∫ t

0 G(s) ds)n

n! e−λt , n ≥ 0, (5)

P{W(t) ≤ x} = G(x) exp

(
−λ

∫ t+x

x

Ḡ(u) du

)
, (6)

P{Wd(t) ≤ x} =
∫ ∞

0
exp

(
−λ

∫ u+x+t

u+x

Ḡ(s) ds

)
dG(u), (7)

P{L(t) = n} =
∫ ∞

0

(λx)n

n! exp

(
−λx − λ

∫ x+t

x

Ḡ(u) du

)
dG(x)

+ λ

∫ ∞

0

(λx)n

n! G(x)(G(x + t) − G(x))

× exp

(
−λx − λ

∫ x+t

x

Ḡ(u) du

)
dx, n ≥ 0. (8)

In the rest of this section we prove (1)–(8), and present additional results such as the steady
state version of the above results and the means and probability generating functions (PGFs)
of the quantities of interest.
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To prove these results we first note that there is a close relationship between the M/G/∞
tollbooth tandem queue and the classical M/G/∞ queue. First, it is easy to see that busy periods
of the two queues are identical. Consequently, the probability that the queue is empty is the
same for the two queues. In fact, the queue length in the classical M/G/∞ queue is equal in
distribution to the number of working servers in the tollbooth tandem queue. Thus, if we let
Qb(t) represent the number of servers that are working in the tollbooth tandem queue at time t ,
then it has the same distribution as that of the queue length in the classical queue at time t .
In the tollbooth tandem queue, in addition to Qb(t), there are other customers whose services
have been completed but cannot leave the system because one or more customers who arrived
earlier are still in service; hence, Q(t) is greater than or equal to Qb(t). The distribution of
Qb(t) is well known (see, e.g. Ross (2010, Chapter 5)), and is given by

P{Qb(t) = n} = (λ
∫ t

0 Ḡ(s) ds)n

n! exp

(
−λ

∫ t

0
Ḡ(s) ds

)
for n = 0, 1, 2, . . . .

Proof of (1). The probability that the tollbooth tandem system is empty at time t is the same
as P{Qb(t) = 0}; thus, we obtain (1). Letting t go to ∞, we obtain the steady state probability
for the tollbooth tandem queue to be empty given by e−ρ , where ρ = λ

∫ ∞
0 Ḡ(s) ds.

Proof of (2). To obtain P{Q(t) = n} for n > 0 and the distributions of other quantities, we
make use of a simple result on sampling of Poisson processes. For a fixed time t , we define an
arrival as a type 1 event if it enters the system at some time and it would be in the system at
time t even if no customers arrived before him/her. In other words, an arrival at time s, s < t,

is type 1 if its service time is greater than t − s. Clearly, an arrival at time s is a type 1 event
with probability P1(s) = Ḡ(t − s) if s ≤ t and P1(s) = 0 if s > t . Letting N1,t (y) denote
the number of type 1 events in [0, y], then it follows from Ross (2010, Proposition 5.3) that
N1,t (y) has a Poisson distribution with mean

E[N1,t (y)] = λ

∫ y

0
P1(s) ds =

⎧⎪⎪⎨
⎪⎪⎩

λ

∫ y

0
Ḡ(t − s) ds, y ≤ t,

λ

∫ t

0
Ḡ(t − s) ds, y > t.

Let Y be the time the first type 1 event takes place, which is defined as ∞ if there are no type 1
events in [0, t]. The distribution of Y is

FY (y) = P{Y ≤ y} = P{N1,t (y) > 0} =

⎧⎪⎪⎨
⎪⎪⎩

1 − exp

(
−λ

∫ y

0
Ḡ(t − s) ds

)
, 0 ≤ y < t,

1 − exp

(
−λ

∫ t

0
Ḡ(t − s) ds

)
, t ≤ y < ∞.

Differentiating gives the density function of Y as

fY (y) =
⎧⎨
⎩

λḠ(t − y) exp

(
−λ

∫ y

0
Ḡ(t − s) ds

)
, 0 ≤ y < t,

0, t ≤ y < ∞.

Note that Y is not a regular random variable and it takes value ∞ with probability

P{Y = ∞} = P{N1,t (t) = 0} = exp

(
−λ

∫ t

0
Ḡ(s) ds

)
.

Clearly, if Y = ∞ then the system is empty at time t .
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It is easy to see that the system is empty at time t if and only if N1,t (t) = 0. Thus,
P{Q(t) = 0} = P{N1,t (t) = 0} = exp(−λ

∫ t

0 Ḡ(s) ds), which is the same as (1) obtained
above using the relationship with the classic M/G/∞ queue. To obtain P{Q(t) = n} when
n > 0, we condition on Y . If Y = y ≤ t then the customer who arrives at time y is the earliest
arrival among the customers still in the system at time t . This implies that all the arrivals who
enter the system between y and t will also be in the system at time t . It follows that conditional
on Y = y, Q(t) is distributed as 1 plus a Poisson random variable with mean λ(t − y). Hence,
by conditioning on Y we obtain, for any n > 0 and 0 ≤ y ≤ t ,

P{Q(t) = n | Y = y} = e−λ(t−y) (λ(t − y))n−1

(n − 1)! ,

and P{Q(t) = n | Y = ∞} = 0 for n > 0. Unconditioning, we obtain (2). The PGF and the
mean of Q(t) can be obtained as

E[zQ(t)] = exp

(
−λ

∫ t

0
Ḡ(s) ds

)

+ λz

∫ t

0
Ḡ(u) exp

(
−λ

(
u(1 − z) +

∫ t

u

Ḡ(s) ds

))
du, 0 ≤ z ≤ 1,

E[Q(t)] = λ

∫ t

0
(1 + λu)Ḡ(u) exp

(
−λ

∫ t

u

Ḡ(s) ds

)
du

= λt + 1 − exp

(
−λ

∫ t

0
Ḡ(s) ds

)
− λ

∫ t

0
exp

(
−λ

∫ t

u

Ḡ(s) ds

)
du.

Letting t → ∞, we obtain the steady state distribution of the number of customers, denoted
by Q, in the system:

P{Q = n} =

⎧⎪⎪⎨
⎪⎪⎩

exp

(
−λ

∫ ∞

0
Ḡ(s) ds

)
for n = 0,

λ

∫ ∞

0

(λu)n−1

(n − 1)!Ḡ(u) exp

(
−λ

(
u +

∫ ∞

u

Ḡ(s) ds

))
du for n > 0.

(9)

The steady state average number of customers in the system is

E[Q] = λ

∫ ∞

0
(1 + λu)Ḡ(u) exp

(
−λ

∫ ∞

u

Ḡ(s) ds

)
du.

Proofs of (3) and (4). We study the number of departure-delayed customers in the system
at time t , that is, those customers who have finished service but cannot depart due to customers
ahead of them. To that end, we condition on the arrival time of the first type 1 event, Y , defined
earlier. Conditioning on Y = y, or the first customer whose service would not finish by time t

occurs at y, then all customers who arrived before y would have finished service by time t ,
implying that they would have all departed the system by time t . This implies that the number
of departure-delayed customers at time t is precisely the number of arrivals between y and t

that have finished service by time t (thus delayed by the first type 1 customer). In addition, if
Y = y < t then the number of customers who arrive between y and t and finish service by
time t has the same distribution as the number of departures in M/G/∞ queue at time t − y,
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which has a Poisson distribution with parameter λ
∫ t−y

0 G(u) du. If Y ≥ t then there is no
departure-delayed customers at time t or Qd(t) = 0. Hence, by conditioning, we obtain

P{Qd(t) = 0} = P{Y ≥ t} +
∫ t

0
P{Qd(t) = 0 | Y = y}fY (y) dy

= exp

(
−λ

∫ t

0
Ḡ(s) ds

)

+ λ

∫ t

0
Ḡ(t − y) exp

(
−λ

∫ t−y

0
G(s) ds − λ

∫ y

0
Ḡ(t − s) ds

)
dy,

and for n > 0, we have

P{Qd(t) = n} = λ

∫ t

0

(λ
∫ t−y

0 G(s) ds)n

n! Ḡ(t − y)

× exp

(
−λ

∫ t−y

0
G(s) ds − λ

∫ y

0
Ḡ(t − s) ds

)
dy.

Using a change of variable u = t − y, we obtain (3) and (4).
It is interesting to compare the expressions for P{Q(t) = k} and P{Qd(t) = k}. The

main difference is that x is replaced by
∫ x

0 G(s) ds. Since x = ∫ x

0 G(s) ds + ∫ x

0 Ḡ(s) ds,
the difference in the two expressions can be explained as follows. For P{Q(t) = n}, both
customers in service (with probability Ḡ(s)) and completed service (with probability G(s)) are
included. For P{Qd(t) = n}, only customers that completed service (with probability G(s))
are included. Therefore, in the expressions, 1 = G(s) + Ḡ(s) is replaced by G(s), or x is
replaced by

∫ x

0 G(s) ds.
The PGF and the mean of Qd(t) are given by

E[zQd(t)] = exp

(
−λ

∫ t

0
Ḡ(s) ds

)

+ λ

∫ t

0
Ḡ(u) exp

(
−λ

(
(1 − z)

∫ u

0
G(s) ds +

∫ t

u

Ḡ(s) ds

))
du, 0 ≤ z ≤ 1,

E[Qd(t)] = λ

∫ t

0
G(u)

(
1 − exp

(
−λ

∫ t

u

Ḡ(s) ds

))
du.

Letting t → ∞, we obtain the steady state distribution of the number of departure-delayed
customers Qd:

P{Qd = 0} = e−ρ + λ

∫ ∞

0
Ḡ(u) exp

(
−λ

(∫ u

0
G(s) ds +

∫ ∞

u

Ḡ(s) ds

))
du,

and, for n > 0,

P{Qd = n} = λ

∫ ∞

0

(λ
∫ u

0 G(s) ds)n

n! Ḡ(u) exp

(
−λ

(∫ u

0
G(s) ds +

∫ ∞

u

Ḡ(s) ds

))
du.

The steady state average number of departure-delayed customers is

E[Qd] = λ

∫ ∞

0
G(u)

(
1 − exp

(
−λ

∫ ∞

u

Ḡ(s) ds

))
du.
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Proof of (5). We now study the distribution of D(t), i.e. the number of customers who depart
the tollbooth tandem queue by time t . To that end, we define, for a given time t , a customer as of
type 2 if he/she would finish service by time t (though he/she may or may not be able to depart),
and let N2,t (y) denote the number of type 2 customers by time y ≤ t . Clearly, a customer
arriving at time s ≤ t is of a type 2 with probability G(t − s), independent of everything
else. The number of type 2 events arrived between 0 and y has a Poisson distribution with
mean λ

∫ y

0 G(t − s) ds. By Ross (2010, Proposition 5.3), we know that N1,t (y) and N2,t (y) are
independent Poisson random variables. Conditional on the first type 1 event arriving at time
Y = y < t , then all arrivals in [0, y] have departed by time t . Since D(t) = N1,t (y)+N2,t (y),
given Y = y < t , we must have D(t) = N2,t (y). If Y = ∞ then all arrivals in [0, t] have
departed by time t and D(t) = N2,t (t). Thus, by conditioning on Y , we obtain, for all n ≥ 0,

P{D(t) = n}

=
∫ t

0
exp

(
−λ

∫ y

0
G(t − s) ds

)
(λ

∫ y

0 G(t − s) ds)n

n! fY (y) dy

+ exp

(
−λ

∫ t

0
G(s) ds

)
(λ

∫ t

0 G(s) ds)n

n! P{Y > t}

= λ

∫ t

0

(λ
∫ y

0 G(t − s) ds)n

n! Ḡ(t − y)e−λy dy + (λ
∫ t

0 G(s) ds)n

n! e−λt .

This establishes (5). The PGF and the mean of D(t) are

E[zD(t)] = λ

∫ t

0
Ḡ(u) exp

(
−λ

∫ t

u

(1 − zG(s)) ds

)
du

+ exp

(
−λ

∫ t

0
(1 − zG(s)) ds

)
, 0 ≤ z ≤ 1,

E[D(t)] = λ

∫ t

0
G(u) exp

(
−λ

∫ t

u

Ḡ(s) ds

)
du

= λ

∫ t

0
exp

(
−λ

∫ t

u

Ḡ(s) ds

)
du + exp

(
−λ

∫ t

0
Ḡ(s) ds

)
− 1.

Note that E[N(t)] = E[Q(t)] + E[D(t)], which has to hold since N(t) = Q(t) + D(t).

Proof of (6). We next compute the distribution of the time a customer spends in the system,
that is, the customer’s sojourn time. As W(s) is the amount of time a customer spends in the
system when he/she arrives at time s, if we let X denote this customer’s service time, then
W(s) ≤ x if and only if the following two conditions hold:

(i) X ≤ x;

(ii) any customer who arrived before s has departed by time s + x or N1,s+x(s) = 0.

This argument leads to

P{W(s) ≤ x} = P{X ≤ x, N1,s+x(s) = 0} = G(x) exp

(
−λ

∫ s

0
Ḡ(s + x − u) du

)
.
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Changing variables gives (6). Letting s → ∞, we obtain the distribution of the steady state
sojourn time, denoted by W , of an arrival as

P{W ≤ x} = G(x) exp

(
−λ

∫ ∞

x

Ḡ(u)

)
du.

Proof of (7). We next analyze the distribution of the departure delay Wd(t) of a customer
who arrives at time t . Clearly, Wd(t) is the difference between the departure time and the service
completion time. A customer that arrives at time t (to be called a tagged customer) finishes
service at time t + X, where X is its service time. The tagged customer can leave the system
only after all customers who arrive before him/her have completed service. It is clear that the
last departure time of the customers who arrive before t is max1≤i≤N(t){Si + Xi}. Hence, the
tagged customer’s departure delay can be expressed as

Wd(t) =
(

max
1≤i≤N(t)

{Si + Xi} − t − X
)+

,

where (x)+ = max{x, 0} for any real number x.
We compute the distribution function of Wd(t) by conditioning on the number of arrivals

N(t). Given N(t) = n, it is well known that {S1, S2, . . . , Sn} have the same joint probability
distribution as the order statistics of {U1(t), U2(t), . . . , Un(t)}, which are independent and
uniformly distributed on [0, t]. Using the fact that Ui(t) and t−Ui(t) have the same distribution,
we obtain, for any x ≥ 0,

P{Wd(t) ≤ x}
= P

{
max

1≤i≤N(t)
{Si + Xi} − t − X ≤ x

}

=
∫ ∞

0
P

{
max

1≤i≤N(t)
{Si + Xi} − t − u ≤ x

}
dG(u)

=
∫ ∞

0

∞∑
n=0

P

{
max

1≤i≤N(t)
{Si + Xi} − t − u ≤ x

∣∣∣ N(t) = n
}
P{N(t) = n} dG(u)

=
∫ ∞

0

∞∑
n=0

P

{
max

1≤i≤n
{Ui(t) + Xi} ≤ t + u + x

}
P{N(t) = n} dG(u)

=
∫ ∞

0

∞∑
n=0

(P{U1(t) + X1 ≤ t + u + x})n (λt)n

n! e−λt dG(u)

=
∫ ∞

0
exp(−λt + λtP{U1(t) + X1 ≤ t + u + x}) dG(u)

=
∫ ∞

0
exp

(
−λt + λ

∫ t

0
G(t + u + x − s) ds

)
dG(u)

=
∫ ∞

0
exp

(
−λ

∫ t

0
Ḡ(t + u + x − s) ds

)
dG(u)

=
∫ ∞

0
exp

(
−λ

∫ t

0
Ḡ(u + x + s) ds

)
dG(u)

=
∫ ∞

0
exp

(
−λ

∫ u+x+t

u+x

Ḡ(s) ds

)
dG(u),
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where the fifth equality follows from the fact that {Ui(t) + Xi, i = 1, 2, . . . , n} are i.i.d., and
the last two equalities follow from a change of variable. This proves (7). Letting t → ∞, we
obtain the steady state distribution of departure delays

P{Wd ≤ x} =
∫ ∞

0
exp

(
−λ

∫ ∞

u+x

Ḡ(s) ds

)
dG(u).

In particular, the probability of having no departure delay is

P{Wd = 0} =
∫ ∞

0
exp

(
−λ

∫ ∞

u

Ḡ(s) ds

)
dG(u).

Proof of (8). Suppose a tagged customer arrives at time t . The number of customers left
behind by the departure of the tagged customer, L(t), is the number of arrivals while the tagged
arrival is in the system. That is, L(t) = N(t + W(t)) − N(t+). Let L1(t) denote the number
of customers in the system immediately after the tagged customer departs, and let L2(t) denote
the number of customers that arrive after but depart at the same moment as the tagged arrival.
Then L(t) = L1(t) + L2(t).

Note that the sojourn time of the tagged customer W(t) is independent of the service times
of all customers arriving after him/her. Therefore, the distribution for the number of customers
left behind by this customer is, for n ≥ 0,

P{L(t) = n} =
∫ ∞

0
P{N(x) = n} dP{W(t) ≤ x}

=
∫ ∞

0

(λx)n

n! exp

(
−λx − λ

∫ x+t

x

Ḡ(u) du

)
dG(x)

+ λ

∫ ∞

0

(λx)n

n! G(x)(G(x + t) − G(x)) exp

(
−λx − λ

∫ x+t

x

Ḡ(u) du

)
dx.

This proves (8). By the above relationship, we have E[L(t)] = λE[W(t)].
To find the distribution of L1(t) and L2(t), we condition on W(t) = x. Given W(t) = x,

each of the customers that arrive during t and t +x can either leave with this customer or stay in
the system. A moment of reflection shows that, given W(t) = x, the number of customers who
will be in the system at time t +x has the same distribution as Q(x), the number of customers at
time x in the tollbooth tandem system with infinite servers that starts with 0 customer at time 0,
and the number of customers who will leave with this customer has the same distribution as
D(x), the number of departures in x units of time in the tollbooth system. Hence, we have

P{L1(t) = n} =
∫ ∞

0
P{Q(x) = n} dP{W(t) ≤ x},

P{L2(t) = n} =
∫ ∞

0
P{D(x) = n} dP{W(t) ≤ x}.

Substituting the results from Q(x), D(x), and W(t), we obtain the results for L1(t) and L2(t).
The details are omitted here.

3. Two extensions

In this section we extend the results obtained in the previous section to two other arrival
processes: a batch Poisson arrival process (Section 3.1), and a nonhomogeneous Poisson arrival
process (Section 3.2).
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3.1. The MX/G/∞ tollbooth tandem queue

The first extension we study is the case when the arrival process is batch Poisson. Classic
infinite server queues with batch Poisson arrival processes have been studied in the literature;
see, e.g. Shanbhag (1966) and Holman et al. (1983). Suppose that customers arrive in batches
at rate λ, and the batch sizes B1, B2, . . . , at these arrival epochs are i.i.d. with probability mass
function P{B = k} = bk, k = 1, 2 . . . , where B is a generic batch size. Let B∗(z) be the PGF
of B, i.e.

B∗(z) =
∞∑

n=1

bnz
n.

The service times of individual customers are independent random variables with common
distribution function G(·), the same as the one defined in Section 2.

Since customers arrive in batches, some new issues arise in the analysis of the quantities
defined in Section 1. For instance, to analyze the queue length we need to determine how
many customers within a batch have completed their service by a certain time. Thus, the
analysis of the quantities of interest is more involved than that in Section 2. For that reason,
the distributions of queue length Q(t) and the number of departure-delayed customers Qd(t)

are given in terms of their PGFs. For waiting time W(t) and departure delay Wd(t), we have
to identify the position of a tagged customer within its batch. In this section we consider the
W(t) and Wd(t) of an arbitrary customer.

Theorem 2. For all t ≥ 0, x ≥ 0, and 0 ≤ z ≤ 1, we have

E[zQ(t)] = exp

(
−λ

∫ t

0
(1 − B∗(G(s)) ds

)

+ λz

∫ t

0

(B∗(G(u)) − B∗(z))
G(u) − z

Ḡ(u)

× exp

(
−λ

(
u(1 − B∗(z)) +

∫ t

u

(1 − B∗(G(s))) ds

))
du, (10)

E[zQd(t)] = exp

(
−λ

∫ t

0
(1 − B∗(G(s)) ds

)

+ λ

∫ t

0

(B∗(G(u)) − B∗(zG(u) + Ḡ(u)))

G(u) − (G(u)z + Ḡ(u))
Ḡ(u)

× exp

(
−λ

(∫ u

0
(1 − B∗(zG(s) + Ḡ(s))) ds

+
∫ t

u

(1 − B∗(G(s))) ds

))
du (11)

E[zD(t)] = λ

∫ t

0

(1 − B∗(zG(u)))

1 − zG(u)
Ḡ(u)

× exp

(
−λ

∫ t

u

(2 − B∗(zG(s) + Ḡ(s)) − B∗(G(s))) ds

)
du

+ exp

(
−λ

∫ t

0
(2 − B∗(G(s)z + Ḡ(s)) − B∗(G(s))) ds

)
(12)
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P{W(t) < x} = G(x)(1 − B∗(G(x)))

Ḡ(x)E[B] exp

(
−λ

∫ x+t

x

(1 − B̄∗(G(s))) ds

)
(13)

P{Wd(t) < x} =
∫ ∞

0

(1 − B∗(G(x + u)))

Ḡ(x + u)E[B] exp

(
−λ

∫ x+u+t

x+u

(1 − B∗(G(s))) ds

)
dG(u).

(14)

Proof of (10). In the last section, the computation of distribution of the number of customers
in the system and the number of departure-delayed customers in the system depend critically
on the sampling of a Poisson process. To use a similar idea for batch Poisson processes, we
need to carefully define the classification of events. We define an arrival epoch of a batch as of
type 1 if at least one customer from this batch has not finished service at time t . Let Xij be the
service time of customer j in batch i, and we introduce the notation

X̄i = max
1≤j≤Bi

Xij .

Then, a batch arriving at time s is of type 1 with probability, if s ≤ t ,

P1(s) = P{X̄i > t − s}

=
∞∑

n=1

P{X̄i > t − s | Bi = n}bn

=
∞∑

n=1

(1 − P{X̄i ≤ t − s | Bi = n})bn

=
∞∑

n=1

(1 − (G(t − s))n)bn

= 1 − B∗(G(t − s)),

and P1(s) = 0 if s > t . The number of type 1 events by time y ≤ t , N1,t (y), has a Poisson
distribution with mean

E[N1,t (y)] = λ

∫ y

0
P1(s) ds =

⎧⎪⎪⎨
⎪⎪⎩

λ

∫ y

0
(1 − B∗(G(t − s))) ds if y ≤ t ,

λ

∫ t

0
(1 − B∗(G(t − s))) ds if y > t .

Similar to the last section, let Y be the time the first type 1 event takes place, defined as ∞
if it never occurs. Then

P{Y ≤ y} = P{N1,t (y) > 0} =

⎧⎪⎪⎨
⎪⎪⎩

1 − exp

(
−λ

∫ y

0
(1 − B∗(G(t − s))) ds

)
if y ≤ t ,

1 − exp

(
−λ

∫ t

0
(1 − B∗(G(t − s))) ds

)
if y > t .

The density function of Y is

fY (y) =
⎧⎨
⎩

λ(1 − B∗(G(t − y)) exp

(
−λ

∫ y

0
(1 − B∗(G(t − s))) ds

)
if 0 ≤ y ≤ t ,

0 if y > t .
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To compute the distribution of the number of customers in the system, the following is
needed. Given max1≤j≤B Xj > x, what is the distribution of B? This is obtained as follows:

b̃n(x) = P

{
B = n

∣∣∣ max
1≤j≤B

Xj > x
}

= 1 − (G(x))n

1 − B∗(G(x))
bn, n = 1, 2, . . . .

We also need to compute, given max1≤j≤B Xj > x, the distribution of the number of customers
in batch B whose indices are at least as large as the index of the first customer whose service
time is longer than x. Given max1≤j≤B Xj > x, the index of the first customer whose service
time is longer than x is

J (x) = min
{
j ; Xj > x

∣∣∣ max
1≤i≤B

Xi > x
}

and it takes value in {1, . . . , B}. The number of customers in B whose index is at least J (x)

can be written as K(x) = B − J (x) + 1. It is easy to verify that

P{J (x) = j | B = n} = (G(x))j−1Ḡ(x)

1 − (G(x))n
, 1 ≤ j ≤ n.

Hence,

P

{
K(x) = k

∣∣∣ max
1≤i≤B

Xi > x
}

= P

{
J (x) = B + 1 − k

∣∣∣ max
1≤i≤B

Xi > x
}

=
∞∑

n=1

P{J (x) = B + 1 − k | B = n}P
{
B = n

∣∣∣ max
1≤i≤B

Xi > x
}

=
∞∑

n=k

P{J (x) = n + 1 − k | B = n} 1 − (G(x))n

1 − B∗(G(x))
bn

=
∞∑

n=k

(G(x))n−kḠ(x)

1 − B∗(G(x))
bn.

The PGF of K(x) is

K∗(z | x) =
∞∑

k=1

P

{
K(x) = k

∣∣∣ max
1≤i≤B

Xi > x
}
zk

= zḠ(x)

(G(x) − z)(1 − B∗(G(x)))
(B∗(G(x)) − B∗(z)).

To compute the PGF of Q(t), we condition on Y = y. Given Y = y, Q(t) is equal in distribution
to K(t − y) plus the number of arrivals between y and t . Hence,

{Q(t) | Y = y} = K(t − y) +
N(t−y)∑

i=1

Bi.

Since all the terms are independent, conditioning on Y , the PGF of Q(t) is

E[zQ(t) | Y = y] = K∗(z | t − y)e−λ(t−y)(1−B∗(z))



AUTHOR(S)’S PERSONAL PDF OFFPRINT COPY

Tollbooth tandem queues 953

and unconditioning we obtain

E[zQ(t)] = λz

∫ t

0

Ḡ(t − y)

(G(t − y) − z)
(B∗(G(t − y)) − B∗(z))

× exp

(
−λ(t − y)(1 − B∗(z)) − λ

∫ y

0
(1 − B∗(G(t − s))) ds

)
dy

+ exp

(
−λ

∫ t

0
(1 − B∗(G(t − s))) ds

)
,

which leads to (10) by using the change of variable u = t − y. Letting t → ∞, we obtain the
steady state distribution of the number of customers in the system. The details are omitted.

Proof of (11). To compute Qd(t), we also condition on Y = y. Given Y = y, Qd(t)

contains two parts. First, those in the same batch that finish service but cannot depart, and those
customers who arrive between y and t and finish their service by time t . From the analysis
above it is seen that there are K(t −y)−1 customers who are behind customer J ≡ J (t −y) in
batch B. Given J , the service times of these customers have distribution G; hence, each finishes
service with probability G(t − y). Hence,

∑K(t−y)−1
i=1 1{Xi≤t−y} is the number of customers

from the same batch B who have finished service but are blocked by customer J . To determine
the number of customers who arrive between y and t who are departure-delayed at time t , we
again use the fact that, given N(t)−N(y) = n, the arrival times of these n batches, denoted by
S1, S2, . . . , Sn are the order statistics of uniform random variables U1(t − y), . . . , Un(t − y).
Hence, the number of these customers who are departure-delayed at t can be written as

N(t−y)−1∑
i=1

Bi∑
j=1

1{Ui(t−y)+Xij ≤t−y} =
N(t−y)∑

i=1

Bi∑
j=1

1{Xij ≤Ui(t−y)} .

Hence,

{Qd(t) | Y = y} =
K(t−y)−1∑

i=1

1{Xi≤t−y} +
N(t−y)∑

i=1

Bi∑
j=1

1{Xij ≤Ui(t−y)} .

Recall the following facts.

• If a batch with n customers arrives at time 0, the PGF of the number of customers that
have completed their service at time x is (G(x)z + Ḡ(x))n.

• If a batch of customers arrives at time 0, the PGF of the number of customers that have
completed their service at time x is B∗(G(x)z + Ḡ(x)).

• If a batch of customers arrives at time U that is uniformly distributed over [0, t], the PGF
of the number of customers that have completed their service at time t is

1

t

∫ t

0
B∗(G(t − s)z + Ḡ(t − s)) ds = 1

t

∫ t

0
B∗(G(s)z + Ḡ(s)) ds.

• The PGF of the number of customers who arrive in [0, t] and have completed their service
at time t is

exp

(
−λ

∫ t

0
(1 − B∗(G(s)z + Ḡ(s))) ds

)
.
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Applying these results, the PGF of Qd(t), given Y = y ≤ t , can be obtained as

E[zQd(t) | Y = y] = (B∗(G(t − y)) − B∗(zG(t − y) + Ḡ(t − y)))

G(t − y) − (G(t − y)z + Ḡ(t − y))

× exp

(
−λ

∫ t−y

0
(1 − B∗(zG(s) + Ḡ(s))) ds

)
.

Unconditioning and using a change of variable u = t − y, we obtain (11).
Intuitively, (11) can be obtained from (10) as follows. Every customer counted in Q(t) except

for the oldest one, which blocks all other customers following him/her and is not counted in
Qd(t), is counted in Qd(t) with probability G(t − s) and not counted in Qd(t) with probability
Ḡ(t − s), if the customer arrives at s. Thus, (11) can be obtained by dropping the ‘z’ terms
after λ and in front of the integral in the second part of (10) and replacing all other ‘z’ terms
in (10) with G(t − s)z + Ḡ(t − s). Letting t → ∞, we obtain the steady state distribution of
the number of departure-delayed customers in the system. The details are omitted.

Proof of (12). First note that the quantity N2,t (y) has the PGF

E[zN2,t (y)] = exp

(
−λ

∫ y

0
(1 − B∗(G(t − s)z + Ḡ(t − s))) ds

)
.

Also note that, conditioning on Y = y, D(t) is equal to N2,t (y) plus J (y) − 1 if y < t ; and is
equal to N2,t (t) if y = ∞. For y < t , we have

E[zJ (t−y)−1] =
∞∑

j=0

zj
P{J (t − y) = j + 1}

=
∞∑

j=0

zj
∞∑

n=j+1

P{J (t − y) = j + 1 | B = n}P
{
B = n | max

1≤i≤B
Xi > t − y

}

=
∞∑

j=0

zj
∞∑

n=j+1

(G(t − y))j−1Ḡ(t − y)

1 − (G(t − y))n

(1 − (G(t − y))n)

(1 − B∗(G(t − y)))
bn

= Ḡ(t − y)(1 − B∗(zG(t − y)))

(1 − B∗(G(t − y)))(1 − zG(t − y))
.

Conditioning on Y , the PGF of D(t) is given by

E[zD(t)]
= λ

∫ t

0
exp

(
−λ

∫ y

0
(1 − B∗(zG(t − s) + Ḡ(t − s))) ds

)

× (1 − B∗(zG(t − y)))

1 − zG(t − y)
Ḡ(t − y) exp

(
−λ

∫ y

0
(1 − B∗(G(t − s))) ds

)
dy

+ exp

(
−λ

∫ t

0
(1 − B∗(G(t − s)z + Ḡ(t − s))) ds

)
P{Y > t},

which leads to (12).
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Proof of (13). Suppose that a tagged customer arrives at time t and we want to calculate
his/her sojourn time distribution. Clearly, this customer is selected from a batch of size n with
probability nbn/E[B]. Let B̂ denote the size of the selected batch.

Let N(t) be the number of batches that arrive by time t . Let X be the service time of the
tagged customer, then the tagged customer arriving at time t finishes his/her service at time
t + X, and leaves the system if and only if all customers who arrived before t , as well as those
customers who are in the same batch but are ahead of him/her, have finished service. Let I be
the index of the tagged customer in his/her batch. Given the batch size is n, I is equal to k with
probability 1/n, k = 1, . . . , n; hence,

P{I = k} =
∞∑

n=k

P{I = k | B̂ = n} nbn

E[B] = b̄k

E[B] , k = 1, 2, . . . ,

where b̄k = ∑∞
n=kbn. Then his/her departure time can be expressed as

max
{

max
1≤i≤N(t),1≤j≤Bi

(Si + Xij ), t + max
1≤k≤I

Xk

}
,

where Xij is the service time of customer j in batch i. Thus, the sojourn time of the tagged
customer is

W(t) = max
{

max
1≤i≤N(t),1≤j≤Bi

(Si + Xij ), t + max
1≤k≤I

Xk

}
− t

= max
{

max
1≤i≤N(t),1≤j≤Bi

(Si + Xij − t), max
1≤k≤I

Xk

}
.

Since it is known that, given N(t) = n, S1, S2, . . . , Sn are order statistic of n uniform random
variables on [0, 1] (see, e.g. Ross (2010, Theorem 5.2)); hence, W(t) has the same distribution
as

W(t) = max
{

max
1≤i≤N(t),1≤j≤Bi

(Ui(t) + Xij − t), max
1≤k≤I

Xk

}

= max
{

max
1≤i≤N(t),1≤j≤Bi

(Xij − Ui(t)), max
1≤k≤I

Xk

}
,

where Ui(t), i = 1, . . . , n are i.i.d. uniform random variables on [0, t], and in the second
equality we have used that fact that Ui(t) and t − Ui(t) have the same distribution. It follows
that

P{W(t) ≤ a}
= P

{
max

{
max

1≤i≤N(t),1≤j≤Bi

(Xij − Ui(t)), max
1≤k≤I

Xk

}
≤ a

}

= P

{
max

1≤i≤N(t)

(
max

1≤j≤Bi

Xij − Ui(t)
)

≤ a
}
P

{
max

1≤k≤I
Xk ≤ a

}

=
( ∞∑

n=0

P

{
max

1≤i≤N(t)

(
max

1≤j≤Bi

Xij − Ui(t)
)

≤ a

∣∣∣ N(t) = n
}
P{N(t) = n}

)

×
( ∞∑

k=1

P

{
max

1≤k≤I
Xk ≤ a

∣∣∣ I = k
}
P{I = k}

)



AUTHOR(S)’S PERSONAL PDF OFFPRINT COPY

956 X. CHAO ET AL.

= exp
(
−λt + λtP

{
max

1≤j≤Bi

Xij − Ui(t) ≤ a
})∑∞

n=1(G(a))nb̄n

E[B]
= exp

(
−λt + λ

∫ t

0
P

{
max

1≤j≤Bi

Xij ≤ a + u
}

du

)
G(a)

(1 − G(a))E[B] (1 − B∗(G(a)))

= G(a)

(1 − G(a))E[B] (1 − B∗(G(a)))

× exp

(
−λt + λ

∫ t

0

∞∑
n=1

bn(G(a + u))n du

)

= G(a)

(1 − G(a))E[B] (1 − B∗(G(a))) exp

(
−λ

∫ t

0
(1 − B∗(G(a + u))) du

)
,

which leads to (13).

Proof of (14). Then, we calculate the distribution of departure delay of the tagged customer.
The departure delay of a customer who arrives at time t is

Wd(t) =
(

max
{

max
1≤i≤N(t),1≤j≤Bi

(Xij − Ui(t)), max
1≤k≤I

Xk

}
− XI

)+
.

For a ≥ 0, following a similar computation as that of the previous case, we obtain

P{Wd(t) ≤ a}
= P

{
max

{
max

1≤i≤N(t),1≤j≤Bi

(Xij − Ui(t)), max
1≤k≤I

Xk

}
− XI ≤ a

}

=
∫ ∞

0
P

{
max

1≤i≤N(t),1≤j≤Bi

(Xij − Ui(t)) ≤ a + x
}
P

{
max

1≤k≤I−1
Xk ≤ a + x

}
dG(x)

=
∫ ∞

0
exp

(
−λ

∫ t

0
(1 − B∗(G(a + x + u))) du

)
1 − B∗(G(a + x))

Ḡ(a + x)E[B] dG(x),

which leads to (14).
Note that for a simple Poisson arrival process, we have B̃(z) = z and E[B] = 1, and so the

results above reduce to those in Section 2.
We remark that the distribution of I is the equilibrium distribution of the batch size. Thus,

the above result actually gives the sojourn time distribution and departure delay distribution of
an arbitrarily chosen customer in steady state. If we consider a customer in a batch arrives at
time t , the distribution of I , the position of the tagged customer in its batch, is given by

P{I = k} =
∞∑

n=k

bn

1

n
for k = 1, 2, . . . .

By using the above method, the distributions of the sojourn time and the departure delay of the
tagged customer can be obtained but the results are much more complicated. The details are
omitted.

Using the above results, the waiting time of the first/last customer in an arbitrary batch or a
batch arriving at time t can also be found. The details are omitted.
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3.2. The M(t)/G/∞ tollbooth tandem queue

The second extension we consider is the case where customers arrive according to a non-
homogeneous Poisson process {N(t); t ≥ 0} with arrival intensity {λ(t); t ≥ 0}, and we
compute the sojourn time of a customer who arrives at time s. The classic infinite-server queue
with nonhomogeneous Poisson arrival processes have important applications in transportation
systems; see, e.g. Eick et al. (1993) and Massey and Whitt (1993).

Recall that, for a nonhomogeneous Poisson process, given N(t) = n, the arrival times
of the n customers are order statistics of V1(t), V2(t), . . . , Vn(t) that have density function
λ(s)/m(t), 0 ≤ s ≤ t , where m(t) = ∫ t

0 λ(s) ds.
To find the distribution for the number of customers in the system at time t , we again define

type 1 events as we did in the previous section. Then, the number of type 1 events up to time y,
N1,t (y), has a Poisson distribution with parameter

∫ y

0 λ(s)Ḡ(t − s) ds. Let Y be the time at
which the first type 1 event takes place, which is equal to ∞ if it never occurs, then

P{Y ≤ y} = P{N1,t (y) > 0} = 1 − exp

(
−

∫ y

0
λ(s)Ḡ(t − s) ds

)
,

and

fY (y) = λ(y)Ḡ(t − y) exp

(
−

∫ y

0
λ(s)Ḡ(t − s) ds

)
.

Given Y = y ≤ t , the number of customers in the system at time t is 1 plus the number of
arrivals between y and t ; thus,

P{Q(t) = 0} = exp

(
−

∫ t

0
λ(s)Ḡ(t − s) ds

)
,

and, for n > 0,

P{Q(t) = n} =
∫ t

0

(
∫ t

y
λ(s) ds)n−1

(n − 1)! λ(y)Ḡ(t − y)

× exp

(
−

∫ t

y

λ(s) ds −
∫ y

0
λ(s)Ḡ(t − s) ds

)
dy.

Next, we find the distribution of Qd(t) as

P{Qd(t) = 0}
= exp

(
−

∫ t

0
λ(s)Ḡ(t − s) ds

)

+
∫ t

0
λ(y)Ḡ(t − y) exp

(
−

∫ t

y

λ(s)G(t − s) ds −
∫ y

0
λ(s)Ḡ(t − s) ds

)
dy,

and, for n > 0,

P{Qd(t) = n} =
∫ t

0

(
∫ t

y
λ(s)G(t − s) ds)n−1

(n − 1)! λ(y)Ḡ(t − y)

× exp

(
−

∫ t

y

λ(s)G(t − s) ds −
∫ y

0
λ(s)Ḡ(t − s) ds

)
dy.
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Using a similar argument as used in Sections 2 and 3.1, we obtain the distribution of the
number of departures by any time t . For all n ≥ 0,

P{D(t) = n} =
∫ t

0

(
∫ y

0 λ(s)G(t − s) ds)n

n! λ(y)Ḡ(t − y) exp

(
−

∫ y

0
λ(s) ds

)
dy

+ (
∫ t

0 λ(s)G(s) ds)n

n! exp

(
−

∫ t

0
λ(s) ds

)
.

The same argument as in the previous section yields the distribution function of the sojourn
time W(t) of a customer that arrives at time s:

P{W(s) ≤ a} = G(a)

∞∑
n=0

(P{V1(s) + X1 − s ≤ a})nP{N(s) = n}

= G(a)

∞∑
n=0

(P{V1(s) + X1 − s ≤ a})ne−m(s) (m(s))n

n!
= G(a) exp(−m(t)(1 − P{V1(s) + X1 − s ≤ a})
= G(a) exp

(
−

∫ s

0
λ(u)Ḡ(a + s − u) du

)
.

Note that, for a nonhomogeneous Poisson arrival process, we will not be able to take limit
s → ∞.

Similarly, the departure delay distribution can be computed as, for a ≥ 0,

P{Wd(s) ≤ a}

=
∫ ∞

0

∞∑
n=0

(P{V1(s) + X1 ≤ s + x + a})nP{N(s) = n} dG(x)

=
∫ ∞

0
exp(−m(s)(1 − P{U1(s) + X1 ≤ s + x + a})) dG(x)

=
∫ ∞

0
exp

(
−

∫ s

0
λ(u)Ḡ(s + x + a − u) du

)
dG(x).

4. Some stochastic comparison results

In this section we present some qualitative results on the base model introduced in Section 2.
We answer the following basic question: how are the number of customers in the system and
customer delays affected by arrival process (i.e. the arrival rate) and customer service times?
This is answered using stochastic ordering. Recall that a random variable X is said to be
stochastically larger than another random variable Y if P{X ≥ t} ≥ P{Y ≥ t} for all t ; see
Ross (1996, Chapter 8) or Shaked and Shanthikumar (2006).

Theorem 3. For the M/G/∞ tollbooth tandem queue defined in Section 2, we have the following
results.

(i) For any t ≥ 0, Q(t), Qd(t), D(t), W(t), and Wd(t) are stochastically increasing in the
arrival rate, λ.

(ii) If the service time distribution becomes stochastically longer, then Q(t) and W(t) become
stochastically larger for any t ≥ 0.
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Proof of Theorem 3(i). First, the results for W(t) and Wd(t) can easily be obtained from (6)
and (7). A sample path, or coupling, approach is utilized to prove the rest of Theorem 3(i).
To that end, we construct two tollbooth queueing systems with arrival rates λ and λ + δ,

respectively. For convenience in this proof, we use Mλ/G/∞ and Mλ+δ/G/∞ to denote these
two tollbooth tandem queues. In the Mλ+δ/G/∞ queue, we mark an arrival as a type I customer
with probability λ/(λ + δ) and as a type II customer with probability δ/(λ + δ), independently
of everything else. Then, type I customers form a Poisson process with arrival rate λ. Thus, the
arrival and service of all type I customers are stochastically equivalent to that of the customers in
the Mλ/G/∞ queue. We couple the service times of the type I customers in the Mλ+δ/G/∞ queue
with the service times of customers in the Mλ/G/∞ queue. However, the departure process of
type I customers in the Mλ+δ/G/∞ queue is different from that in the Mλ/G/∞ queue due to
the existence of type II customers. If a type I customer has departed in the Mλ+δ/G/∞ queue,
the corresponding customer in the Mλ/G/∞ queue must have departed too. Let Qλ(t) be the
number of customers in the Mλ/G/∞ queue, and Qλ+δ,I (t) be the number of type I customers
in the Mλ+δ/G/∞ queue at time t . The argument above shows that

Qλ(t) ≤ Qλ+δ,I (t) ≤ Qλ+δ(t).

This proves that Q(t) is stochastically increasing in the arrival rate λ.
To construct Dλ(t) and Dλ+δ(t), let N(t) be the number of customers who arrived in [0, t]

in the Mλ/G/∞ queue. These N(t) customers are generated as the type I customers who arrived
in [0, t] in the Mλ+δ/G/∞ queue. We assign the service times of the N(t) customers in the
Mλ/G/∞ queue to the first N(t) arrivals in the Mλ+δ/G/∞ queue. As service times of all
customers have the same distribution, probabilistically, this assignment of service times does
not change the number of departures in the Mλ+δ/G/∞ queue. Since the first N(t) customers in
the Mλ+δ/G/∞ queue arrive earlier than the first N(t) customers in the Mλ/G/∞ queue (and yet
they have the same service times) and their departures are not affected by arrivals after them,
it is clear that in the processes thus constructed, Dλ(t) is less than or equal to Dλ+δ(t). This
shows that D(t) is stochastically increasing in the arrival rate λ as well.

Proof of Theorem 3(ii). We first write (2) as follows. For n = 1,

P{Q(t) = 1} = λ

∫ t

0
Ḡ(u) exp

(
−λ

(
u +

∫ t

u

Ḡ(s) ds

))
du

=
∫ t

0
e−λu d

(
exp

(
−λ

∫ t

u

Ḡ(s) ds

))

= eλt − exp

(
−λ

∫ t

0
Ḡ(s) ds

)
+ λ

∫ t

0
exp

(
−λ

(
u +

∫ t

u

Ḡ(s) ds

))
du,

and, for n ≥ 2,

P{Q(t) = n} =
∫ t

0

(λu)n−1

(n − 1)!e−λu d

(
exp

(
−λ

∫ t

u

Ḡ(s) ds

))

= (λt)n−1

(n − 1)!e−λt − λ

∫ t

0

(
(λu)n−2

(n − 2)! − (λu)n−1

(n − 1)!
)

× exp

(
−λ

(
u +

∫ t

u

Ḡ(s) ds

))
du
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= (λt)n−1

(n − 1)!e−λt − λ

∫ t

0

(λu)n−2

(n − 2)! exp

(
−λ

(
u +

∫ t

u

Ḡ(s) ds

))
du

+ λ

∫ t

0

(λu)n−1

(n − 1)! exp

(
−λ

(
u +

∫ t

u

Ḡ(s) ds

))
du.

Using these expressions and (1), it is readily verified that, for k ≥ 1,

P{Q(t) ≤ k} =
k∑

n=0

P{Q(t) = n}

=
k∑

n=1

(λt)n−1

(n − 1)!e−λt

+ λ

∫ t

0

(λu)k−1

(k − 1)! exp

(
−λ

(
u +

∫ t

u

Ḡ(s) ds

))
du.

Therefore, if Ḡ(s) becomes larger (for any s > 0), the above sum gets smaller. This shows that,
if the service time X becomes stochastically larger then Q(t) will be stochastically larger too.

The result for W(t) is obvious by (6). This completes the proof of Theorem 3(ii).

5. Conclusions

In this paper we have studied a tollbooth tandem queue with an infinite number of ho-
mogeneous servers. We obtained closed-form solutions for the distributions for the number
of customers in the system, number of departure-delayed customers in the system, customer
sojourn times, and customer departure delays. We first analyzed the case with Poisson arrival
processes and then extended the results to batch Poisson arrival processes and nonhomogeneous
Poisson arrival processes. These results offer useful insights for infinite-server queues when
customers have to depart in the order they arrive, as well as other real world models such as
tollbooth tandem queues and gas stations, whose studies have been mainly relying on numerical
methods; see, e.g. Hall and Daganzo (1983), Hong et al. (2009), Daskin et al. (1976), and
Teimoury and Yazdi (2011).

The results can be extended to the case when the arrivals follow a batch Markov arrival
process. In that case, the fundamental differential equations can be derived for the probability
distributions and the moments of the quantities of interest can be computed using standard
methods; see, e.g. Ramaswami and Neuts (1980).
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