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Abstract This paper studies the order-fulfillment process of a supplier producing multiple
customized capital goods. The times when orders are confirmed by customers are random.
The supplier can only work on one product at any time due to capacity constraints. The
supplier must determine the optimal time to start the process for each order so that the total
expected cost of having the goods ready before or after their orders are confirmed is mini-
mized. We formulate this problem as a discrete time Markov decision process. The optimal
policy is complex in general. It has a threshold-type structure and can be fully characterized
only for some special cases. Based on our formulation, we compute the optimal policy and
quantify the value of jointly managing the order fulfillment processes of multiple orders and
the value of taking into account demand arrival time uncertainty.

Keywords Supply chain management · Markov decision process · Dynamic
programming · Multi-item production/inventory · Stopping time

1 Introduction

In this paper, we study the order-fulfillment process of a supplier producing customized cap-
ital goods. It is critical for firms in capital goods industries to determine the proper time to
start order-fulfillment processes. On one hand, their customers expect them to be respon-
sive and the time that they are prepared to wait for the product is usually much shorter than
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the time needed to produce and deliver it. On the other hand, it is risky for the firms to
start production before the customers confirm their orders due to inventory holding costs
and the possibility of order cancellation. It is challenging, however, for firms to determine
the best time to start their order-fulfillment processes. First, it is highly uncertain when the
demand will arrive. For example, in the semiconductor equipment supply chain studied by
Cohen et al. (2003), of 143 initial orders, 43 orders were later canceled and 76 experienced
changes with respect to the delivery date. Second, firms typically supply multiple products
(ordered by the same or different customers), which have different priorities. For example,
customers for the new A380 superjumbo jet include, among others, Quantas Airways, Sin-
gapore Airlines, Air France and Emirates Airlines.1 The priority depends on the products
and the related services that the customers purchase and the contracts that they sign with the
supplier. It may also depend on the customers’ impact on the firm’s long-term profitability,
which determines how the customers will be treated by the supplier. Since different orders
share the same capacity, their fulfillment processes must be coordinated.

These two dimensions of order-fulfillment complication have been observed in various
context. Since its acquisition of Canadian Airlines in 2000, Air Canada has been dealing
with union infighting among the pilots over seniority rankings. Air Canada placed orders
with Boeing in April 2005, but made the purchase contingent on the pilots’ approval of the
labor deal. The source of uncertainty in this case comes from the labor dispute. In mid-June
of 2005, a proposed labor pact was rejected by the Air Canada Pilots Association (ACPA)
and, as a result, the orders with Boeing were in tatters. Air Canada finally lost two deliv-
ery slots because Boeing reallocated its capacity to processing orders from other airlines
(Jang 2005). In making this decision, Boeing had to take into account various factors, in-
cluding production lead time, uncertainty and priority. Suppliers in defense industries face
similar problems (Mora et al. 2011; MacCormack and Mason 2005). They produce highly
customized products that are constantly evolving.

Cohen et al. (2003), to the best of our knowledge, is the first paper to explicitly model
the order-fulfillment processes of capital goods. They adopt a newsvendor model with the
time to start the process, as opposed to the usual quantity, as the decision variable. They
estimate the cost parameters based on empirical data. Their data reveal that the supplier
perceives the holding cost and the cancellation cost to be about three and two times higher,
respectively, than the delay cost. Motivated by the same problem, Li (2007) uses a different
model that allows the supplier to start the process if the demand has been confirmed before
the time that has been preset. He examines the effects of the lead time gap, the lead time
gap uncertainty and the risk aversion of the supplier on the optimal policy. He also provides
alternative explanations for the data presented by Cohen et al. (2003). The basic model in Li
(2007) is based upon the framework of Katircioglu and Atkins (1996), who study the unit
demand inventory problem. All the papers mentioned above consider only one product, or,
equivalently, unlimited capacity. The products can therefore be managed independently.

The problem can be viewed as a multi-item production/inventory systems where orders
arrive randomly one at a time (e.g., Ha 1997). Due to the difficulty in handling large dimen-
sions of state space, this literature typically relies on two important assumptions. First, all
times (i.e., arrival and production times) are exponentially distributed.2 Second, there is an
infinite horizon. Porteus (2002, Chap. 14) provides a detailed discussion about this line of

1http://www.usatoday.com/money/biztravel/2005-06-01-airbus-usat_x.htm?csp=N009.
2Ha (2000) is an exception. He allows the production (or processing) time to have an Erlang distribution
and shows that a single-state variable called the work storage level can be used to capture completely the
information regarding the inventory level and the status of the current production.

http://www.usatoday.com/money/biztravel/2005-06-01-airbus-usat_x.htm?csp=N009
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research and nicely explains what has been done, what has not been done and where the
challenges remain. See also Benjaafar et al. (2005) for later development and references.
While similar in spirit, our model is neither a consequence of, nor more general than, any
work in such literature. In our model, we consider only one demand arrival for each product,
which is typical in capital goods industries. Consequently, we can avoid the dimensionality
problem and consider different distributions than only the exponential distribution. In partic-
ular, in our model, the production lead times are deterministic and can possibly be extended
to any positive random variables. The arrival time (i.e., the time when an order is confirmed
in our model) is also allowed to be more general than the exponential distribution.

Our work is also, in spirit, related to the literature on scheduling with earliness and
tardiness penalties. Jia (2001) considers uncertain due date, but all jobs share a com-
mon due date, which is exponentially distributed. In Elhafsi (2002), when setting planned
lead times, one also faces the earliness and tardiness trade-off. But his focus is on meet-
ing the (deterministic) due date of a single job in a production systems with multi-
ple processing stages. There is a vast literature on scheduling that assumes no holding
cost of completing a job before it is due (Chaps. 10 and 11, Pinedo 2002). There is
also a vast literature on due date setting (see Duenyas and Hopp 1995; Duenyas 1995;
Wein 1991, and the literature review therein). In both, the trade-off between producing too
early and too late, which is crucial in our work, is not modeled.

Specifically, in this paper, we consider the production of multiple products, which share
the same facility and are ordered by different customers. The supplier can only work on one
product at any time due to capacity constraints. Production requires a lead time. Production
of any product, once started, cannot be interrupted until it is complete. The problem facing
the supplier is to decide when to start the production of each product so as to minimize the
total expected holding and penalty costs.

We formulate the problem as a discrete time Markov decision process. The structure
of the optimal policy in general is very complex. The optimal policy has a threshold-type
structure only for the case with two orders, one of which is confirmed and the other is not.
In fact, even the formulation itself is nontrivial. The complexity is due to, first, the capacity
linkage across different orders, and second, the uncertainty of demand arrival times. The
formulation enables us to search for the policy that minimizes the total expected cost over
an infinite horizon. If we drop either the capacity linkage across different orders, or both
the capacity linkage and the uncertainty of demand arrival times, then the problem would
become much simpler. However, as we show from numerical studies, the costs of doing
those can be high most of the time. The cost of ignoring the capacity linkage is high when
the total number of orders is large and the orders are very different from one another in their
lead times. The cost of ignoring demand uncertainty is consistently high and it gets higher
also when the orders are very different from one another in their lead times.

The rest of this paper is organized as follows. In Sect. 2, we introduce assumptions, nota-
tion, and the dynamic programming formulation of the model. In Sect. 3, we investigate the
special case when there is only one unfilled order, which lays the groundwork for the gen-
eral case. In Sect. 4, we consider the case when there are two unfilled orders, one of which
is confirmed and the other is not and its confirmation time is random. In Sect. 5, we show
by counter examples that there are no simple structure when there are multiple unconfirmed
products. We then quantify the value of jointly managing the order fulfillment processes
of multiple orders and the value of taking into account demand arrival time uncertainty. In
Sect. 6, we discuss several extensions of our model and conclude the paper. All proofs are
presented in Appendix.
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2 Model description and formulation

Suppose that the supplier needs to fill n different orders, which share the same production
capacity. Due to constraints on production capacity, the supplier can process at most one
order at a time. Production of any product, once started, cannot be interrupted until it is
finished. Production of the product i takes a lead time of li , for 1 ≤ i ≤ n. We assume
that the lead times are deterministic. At time 1, the order of product i will be confirmed at
time Xi , which has a discrete distribution P {Xi = j} = bi

j , j ≥ 1, for 1 ≤ i ≤ n. The random
variable Xi is assumed to have a finite mean for all 1 ≤ i ≤ n.

Two types of costs are considered: holding cost and delay penalty cost. If production is
completed before the order is confirmed, then the supplier incurs a holding cost hi per unit
time; if the order is confirmed before the product is available on hand, then the supplier
incurs a delay penalty cost πi per unit time. Here we assume that the supplier starts to incur
a delay penalty as soon as the order is confirmed if the product is not ready. This assumption
is not critical and the issues of due date or customer order lead time will be discussed in
Sect. 6. The penalty cost can take various forms. First, because the bulk of the purchase
price is paid at the time of delivery, late delivery leads to late payment and the penalty
cost is the time value of money. Second, the penalty cost can be compensation specified
in contracts for late delivery. The compensation can either be paid via cash arrangements
or noncash arrangements, such as discounts on spare parts purchases and crew training.3

Finally, late delivery has a negative impact on firms’ image, which will affect their future
sales.

Let vector x = (x1, x2, . . . , xN) represent the status of all orders. The status of an order i

can be “production started” (xi = 2), “order confirmed but production not started” (xi = 1),
or “order unconfirmed” (xi = 0). Let F represent the set of orders whose production has
been started and F̄ the rest. Among all the orders in F̄ , let C and C̄ be the set of orders that
have been confirmed, and the set of orders that have not been confirmed, respectively. Then
we have F̄ = C ∪ C̄. We use | · | for the cardinality of a set.

The timing of events in a period is as follows. First, the state is observed and a decision
is made. Second, if the production is due to be completed in that period, then the product
is available to fill demand. Third, orders, if any, are confirmed. Fourth, costs are incurred.
Throughout the paper, we assume that if the production of product i is started in period s,
the product will be available at the beginning of period s + li before the order is confirmed
in that period.

We assume that the planning horizon of the supplier is infinite. The decision that the
supplier has to make is when to start the production of each product. At the beginning of
each period, if the production capacity is unavailable (i.e., a production is on-going), there is
no decision to be made. If the production capacity is available, the supplier decides whether
or not to start the production of a product: “wait” or “produce”. If the action is to produce,
the supplier has to decide which product to produce.

Let u(x, s) be the minimal expected cost if the status of orders is x at the beginning of
period s. The action space, for a given state (x, s), is to either wait, or start the production
of one of the orders in F̄ . Let w(x, s, i) be the expected cost if action i is taken, where
i = 0 means “wait” and i ∈ F̄ means “start the production of product i”. Since a decision
is necessary only if there is no on-going production, the functions u(x, s) and w(x, s, i) are
defined only for s such that the production capacity is available. In addition, as soon as the

3It is a common practice in the aerospace industry that late delivery penalties are paid via noncash arrange-
ments (Matlack and Holmes 2005).
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production of a product has been started, the expected costs associated with that order can
be calculated. Thus, u(x, s) does not include the costs associated with any order i ∈ F . For
ease of exposition in the following formulation, we arrange the sequence of orders such that
the vector x can be written as x = (0, . . . ,0,1, . . . ,1,2, . . . ,2).

First, we have u(x, s) = 0 if F̄ = ∅, i.e., all elements in x are equal to 2, or the production
of all ordered has been started before period s.

For F̄ �= ∅, we consider two cases.
(a) If C̄ �= ∅, then we have

u(x, s) = min
i∈{0}∪F̄

w(x, s, i). (1)

The expression for the cost function w(x, s, i) depends on the time s and the action taken.
At the beginning of period s, if order i has not been confirmed yet, then the distribution of
Xi will have to be updated and the probability that it will be confirmed j periods later is
given by the following conditional distribution:

bi
s+j

∑
k≥s bi

k

for all s ≥ 1 and j ≥ 0. Let Ω(i) represent a set of all vectors of cardinality i and with
elements either 0 or 1. For example, Ω(2) = {(0,0), (0,1), (1,0), (1,1)}. Given state (x, s),
the first |C̄| state variables (i.e., the status of the unconfirmed orders) will become y, where
y ∈ Ω(|C̄|), with probability

p(y, s) =
|C̄|∏

j=1

((
b

j
s

∑
i≥s b

j

i

)yj
(

1 − b
j
s

∑
i≥s b

j

i

)1−yj
)

,

where yi is the ith element of y.
If the action is “wait”, the supplier needs to pay a unit of penalty cost for each confirmed

order and for each order that will be confirmed in the current period; that is,

w(x, s,0) =
∑

i∈C

πi +
∑

y∈Ω(|C̄|)
p(y, s)

[ |C̄|∑

i=1

yiπi + u(y,1, . . . ,1,2, . . .2, s + 1)

]

.

If the decision is to produce product k ∈ F̄ , then the capacity will be used until time
s + lk , which is the next decision epoch. The supplier needs to pay lk units of penalty
cost for each confirmed order. For the unconfirmed orders that will be confirmed be-
fore time s + lk , the supplier also incurs penalty cost and its amount depends on the
confirmation times. We consider two cases. Suppose that k ∈ C �= ∅. Let Ψ (k) repre-
sent the set of all vectors of cardinality k and with nonnegative elements. For example,
Ψ (2) = {(0,0), (0,1), (1,0), (1,1), (2,1), . . .}. Then,

w(x, s, k) = lk
∑

j∈C

πj +
∑

y∈Ψ (|C̄|)

( |C̄|∏

j=1

b
j
s+yj

∑
i≥s b

j

i

)( |C̄|∑

j=1

(lk − yj )
+πj + u(z,2, . . . ,2, s + lk)

)

,

where x+ = max{0, x} and z is an |F̄ |-dimensional vector and its j th element is given by

zj =

⎧
⎪⎪⎨

⎪⎪⎩

0, if yj ≥ lk, j ∈ C̄;
1, if yj < lk, j ∈ C̄;
2, if j = k;
1, if j �= k, j ∈ C.
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Suppose that k ∈ C̄. Then,

w(x, s, k) = lk
∑

j∈C

πj + πk

lk−1∑

j=0

(lk − j)
bk

s+j
∑

i≥s bk
i

+ hk

∞∑

j=lk

(j − lk)
bk

s+j
∑

i≥s bk
i

+
∑

y∈Ψ (|C̄|−1)

( ∏

j∈C̄, j �=k

b
j
s+yj

∑
i≥s b

j

i

)

×
( ∑

j∈C̄, j �=k

(lk − yj )
+πj + u(z,2, . . . ,2, s + lk)

)

,

where z is an |F̄ |-dimensional vector and its j th element is given by

zj =

⎧
⎪⎪⎨

⎪⎪⎩

0 if yj ≥ lk, j ∈ C̄, j �= k;
1 if yj < lk, j ∈ C̄, j �= k;
2 if j = k;
1 if j ∈ C.

(b) If C̄ = ∅, i.e., all orders have been confirmed, then waiting is suboptimal and the
supplier should start the production of one of the products in C; then we have,

u(x, s) = min
i∈F̄

w(x, s, i),

where

w(x, s, i) = li
∑

j∈C

πj + u(z,2, . . . ,2, s + li ),

and z is an |F̄ |-dimensional vector and its ith element is 2 and the rest are all 1.
Let a∗(x, s) be the optimal action when the state is (x, s). That is,

a∗(x, s) = argmin
i∈{0}∪F̄

{
w(x, s, i)

}
.

When different actions lead to the same cost, a∗(x, s) is defined as the largest number. For
example, a∗(x, s) = 2 when starting the production of product 2, product 1, or waiting all
lead to the minimal cost.

Using the above formulation, a computational method can be developed for computing
the minimum expected total costs and the optimal policy. To find u(x, s) and the optimal pol-
icy, we use induction to break down the problem into smaller and more manageable pieces.
To illustrate the key idea, suppose x = (0,0). Based on the above dynamic programming,
to compute u(0,0, s), we need to know u(0,1, s), u(1,1, s), and u(0,2, s). To compute
u(0,1, s), we need to know u(1,1, s) and u(0,2, s). To compute u(1,1, s) and u(0,2, s),
we need to know u(1,2, s), which equals l1π1.

3 Models with one unfilled order

To understand the form of the optimal policy, we start with the case with only one order
to fulfill. If the order is already confirmed, then the optimal policy is to start production
immediately and the minimal cost is l1π1. The case when the order has not been confirmed
was previously studied by Katircioglu and Atkins (1996) and Li (2007). Here we remodel
it by using our general dynamic programming framework and lay the groundwork for the
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more complex problem with multiple products. In this case, we need to compute u(x, s),
where x = (0,2,2, . . . ,2). To simplify notation, within this section we leave out the status
of orders as state variables and write u(x, s) as u(s) and w(x, s, a) as w(s, a) for a = 0,1.
We also omit the superscripts or subscripts that are used to differentiate different orders.
Then, (1) is simplified to

u(s) = min
{
w(s,0),w(s,1)

}
, (2)

where

w(s, i) =
{

π
∑l−1

j=0(l − j)
bs+j∑
k≥s bk

+ h
∑∞

j=l+1(j − l)
bs+j∑
k≥s bk

if i = 1;
bs∑

k≥s bk
(l + 1)π + (1 − bs∑

j≥s bj
)u(s + 1) if i = 0.

As we assume that the expectation of X is finite, w(s,1) is finite for all s. Consequently,
u(s), which is less than w(s,1), is finite. The problem is known as a stopping problem (see,
for example, Ross 1983). The following definition is needed for the characterization of the
optimal policy.

Definition 1 (Barlow and Proschan 1996) A discrete distribution {bk}∞
k=1 has an increasing

failure rate (IFR) if and only if bk/
∑∞

i=k bi is increasing in k.

An equivalent condition for IFR is that
∑

i≥k+j bi/
∑

i≥k bi is decreasing in k for any
j ≥ 0. Most common discrete distributions have IFR, including, for example, Binomial,
Poisson, Geometric, and Negative binomial (r,p) with r ≥ 1. Let

f (s) = bs
∑

i≥s bi

(l + 1)π +
(

1 − bs
∑

j≥s bj

)

w(s + 1,1) − w(s,1).

Then f (s) represents the difference in cost between starting production immediately and
waiting for exactly one more period and then starting production. The following lemma
shows a useful property of f (s).

Lemma 1 If {bk}∞
k=1 has an IFR, then f (s) ≥ 0 if and only if s ≥ s∗, where

s∗ = inf
{
s : f (s) ≥ 0

}
. (3)

The set {s : f (s) ≥ 0} represents the set of state for which starting production immedi-
ately is at least as good as waiting for exactly one more period and then starting production.
In addition, s∗ is the first time that the process enters the set {s : f (s) ≥ 0}. By substituting
the costs into f (s), we can see that s∗ is the smallest s such that

∑
j≥s+l+1 bj
∑

j≥s bj

− π

π + h
≤ 0.

A direct consequence of the above lemma is that the set {s : f (s) ≥ 0} is a closed set. That
is, if i ∈ {s : f (s) ≥ 0}, then any j ≥ i satisfies j ∈ {s : f (s) ≥ 0}. Proposition 1 gives the
structure of the optimal policy.

Proposition 1 Assume that {bk}∞
k=1 has an IFR. Then, the optimal policy for (2) is to start

production if and only if s ≥ s∗.
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According to the above proposition, production should be started the first time the process
enters a state in {s : f (s) ≥ 0} and s∗ is the threshold for ordering. As the computation of s∗

(or that of f (s)) involves only the one-step cost, the policy is a one-step-look-ahead policy
(Ross 1983). As a special case, when X follows a Geometric distribution, which has the
memoryless property, s∗ is either zero or infinity. That is, the optimal policy is either to
start production or wait until the order is confirmed and exactly which action is optimal
only depends on the cost parameters and the lead time, but not on the state. In addition, the
optimal expected cost u(s) is also independent of the state.

4 Models with one confirmed order and one unconfirmed order

We now consider two unfilled orders in this section. Suppose at the beginning of time s, the
order for product 2 has been confirmed, but the order for product 1 has not. In this case, we
need to compute u(x, s), where x = (0,1,2, . . . ,2). To simplify notation, within this section,
we write X1 and b1

j as X and bj , respectively. We do, however, use {π1,π2, l1, l2, h1} for the
penalty costs, production times, and holding cost for orders 1 and 2. We also remove the last
N − 2 elements in the state vector x; for example, we write u(0,1,2, . . . ,2, s) as u(0,1, s).

The dynamic programming recursion (1) becomes

u(0,1, s) = min
{
w(0,1, s,0),w(0,1, s,1),w(0,1, s,2)

}
, (4)

where

w(0,1, s,0) =
(

1 − bs
∑

i≥s bi

)

π2 + bs
∑

i≥s bi

[
(l1 + 1)π1 + (l2 + 1)π2 + min{l1π2, l2π1}

]

+
(

1 − bs
∑

j≥s bj

)

u(0,1, s + 1),

w(0,1, s,1) = π1

l1−1∑

j=0

(l1 − j)
bs+j

∑
i≥s bi

+ h1

∞∑

j=l1+1

(j − l1)
bs+j

∑
i≥s bi

+ (l1 + l2)π2,

and

w(0,1, s,2) = l2π2 +
∑l2−1

j=0 (l1 + l2 − j)bs+j
∑

i≥s bi

π1 +
∑∞

j=l2
bs+j

∑
i≥s bi

u(0,2, s + l2).

Here u(0,2, s + l2) is for the expected costs of order 1 starting from period s + l2.
When the order for product 1 is confirmed, the supplier should start production imme-

diately and the supplier must decide which product to start first. The choice depends on
the ratio of the delay cost to the lead time, i.e., πi/ li (see the expression for w(0,1, s,0)).
In other words, the ratio of the delay cost to the lead time determines the priority of the
orders. Therefore, for ease of exposition, we say that the order for product 1 has a higher
priority over the order for product 2 if π1l2 − π2l1 ≥ 0 and the order for product 2 has a
higher priority over product 1 otherwise. This condition is similar to the celebrated cμ rule
for scheduling customers of different types in a potentially congested service system, where
c is the waiting cost rate and μ is the service rate. A similar condition has also been used in
the literature of make-to-stock queues (see, for example, Porteus 2002).
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4.1 The order for product 2 has a higher priority

In this subsection, we consider the case when product 2 has a higher priority (i.e.,
π2l1 ≥ π1l2). Let

f2(s) =
(

1 − bs
∑

i≥s bi

)

π2 + bs
∑

i≥s bi

[
(l1 + 1)π1 + (l2 + 1)π2 + l2π1

]

+
(

1 − bs
∑

i≥s bi

)

w(0,1, s + 1,2) − w(0,1, s,2).

Then f2(s) represents the difference in cost between starting the production of product 2
immediately and waiting for exactly one period and then start the production of product 2.
The following lemma discusses the property of f2(s) and determines the optimal sequence
if the production of one of the two products must be started.

Lemma 2 If π1l2 ≤ π2l1, then (a) f2(s) ≥ 0 for any s; (b) w(0,1, s,1) ≥ w(0,1, s,2) for
any s.

According to part (a) of the lemma, under the condition π1l2 ≤ π2l1, if the supplier is to
start the production of product 2 before the order for product 1 is confirmed, then it should
do that immediately at state s; the cost is higher to wait for a while and then start producing
product 2. Part (b) means that at any time state s, if the supplier is to start production, then
the production of product 2 should be started first. The optimal policy follows directly from
Lemma 2.

Theorem 2 If π1l2 ≤ π2l1, then for any s, the optimal decision is to start the production of
product 2; that is, a∗(0,1, s) = 2 for all s.

The optimal policy in this case is relatively simple because order 2 has a higher priority
and it has been confirmed. Once the optimal policy for one of the two products has been
decided, the remaining problem is a single-product problem. Specifically, if the order for
product 1 is confirmed before s + l2, the time when the capacity is released from producing
product 2, then the production of product 1 needs to be started at s + l2. If the order for
product 1 is confirmed after s + l2, then the problem facing the supplier is essentially the
same as what is analyzed in Sect. 3 and the order confirmation time is X conditional on
X ≥ l2 + s.

4.2 The order for product 1 has a higher priority

In this subsection, we consider the case when π1l2 > π2l1. We first introduce the following
concept.

Definition 2 A discrete distribution {bk}∞
k=1 is said to have an increasing likelihood ratio

(ILR) if bk+i/bk is decreasing in k for all i ≥ 0.

ILR is (slightly) stronger than IFR, but it still includes most of the common distribu-
tions (the IFR examples mentioned in Sect. 3 are all ILR). The following lemma further
characterizes f2(s).
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Lemma 3 If π1l2 > π2l1, π2 ≥ h1, and X has ILR, then f2(s) ≤ 0 if and only if s ≥ s̄2,
where

s̄2 = inf
{
s : f2(s) ≤ 0

}
.

The sign of f2(s) determines whether the supplier should immediately start the produc-
tion of product 2 or delay for exactly one period and then start the production. As time
progresses, since the order for product 1 is more and more likely to be confirmed due to IFR
assumption, waiting is less likely to be the better choice.

Let

f1(s) =
(

1 − bs
∑

i≥s bi

)

π2 + bs
∑

i≥s bi

[
(l1 + 1)π1 + (l2 + 1)π2 + l1π2

]

+
(

1 − bs
∑

i≥s bi

)

w(0,1, s + 1,1) − w(0,1, s,1).

Similar to f2(s), f1(s) is the difference in cost between starting the production of product 1
immediately and waiting for exactly one period and then start the production of product 1.
Lemma 4 provides useful properties of f1(s).

Lemma 4 Assume that π1l2 > π2l1 and X has an IFR.

(a) f1(s) ≥ 0 if and only if s ≥ s̄1, where

s̄1 = inf
{
s : f1(s) ≥ 0

}
.

(b) s̄1 ≤ s∗
1 , where s∗

1 is the smallest s such that
∑

j≥s+l1+1 bj
∑

j≥s bj

− π1

π1 + h1
≤ 0.

(c) If, in addition, π2 ≥ h1, then, f1(s) ≥ 0 for all s.

The interpretation of part (a) is similar to that of Lemma 1. As time progresses, the order
for product 1 is more likely to be confirmed and hence there is a point in time, s̄1, at which
the supplier should stop waiting and start the production of product 1. What is different from
Lemma 1 is that here the order for product 2 has already been confirmed, and hence delaying
the production of product 1 will not only increase the expected penalty cost from product 1
but also delay the fulfillment of the order for product 2. As a result, the supplier should start
the production of product 1 earlier than s∗

1 , which is the stopping time when product 1 is
the only product whose order needs to be filled. This is what we show in part (b). Finally, if
π2 ≥ h1, then starting the production of product 1 immediately is at least as good as delaying
for exactly one period and then starting the production of product 1. This is because delaying
for one period increases the penalty cost at least by π2, but the saving on holding cost is no
more than h1. So f1(s) ≥ 0 for all s. By the above two lemmas, we can arrive at the optimal
policy.

Theorem 3 Assume that π1l2 > π2l1, π2 ≥ h1, and X has ILR.

(a) u(0,1, s) = min{w(0,1, s,1),w(0,1, s,2)} for all s; that is, for all s, a∗(0,1, s) = 1
or 2;

(b) Let z∗
1 = inf{s : w(0,1, s,1)−w(0,1, s,2) ≥ 0}. If s < z∗

1, then a∗(0,1, s) = 2; if s ≥ z∗
1,

then a∗(0,1, s) = 1.
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Theorem 3 provides a full characterization of the optimal policy for the case when prod-
uct 1 has a higher priority. Again, once the production of one of the products has been
started, the remaining problem is a one-product problem, for which the optimal policy is
provided in Proposition 1. From a practical standpoint, the condition π2 ≥ h1 is not at all
restrictive. While the penalty costs may vary greatly among different products, the costs of
production and logistics of different products that share the same capacity (different ver-
sions of 787 Dreamliners created by different customization, for examples) tend to be sim-
ilar. This implies that the holding costs of products that share the same capacity are also
similar. Furthermore, it is widely accepted in inventory research that, for the same product,
delay penalty cost is much greater than holding cost. Take the newsvendor problem as an
example. A service level of at least 90 % is common, which means that the penalty cost is at
least 9 times greater than the holding cost. The following theorem further characterizes z∗

1.

Theorem 4

(a) The threshold z∗
1 is increasing in π2 but decreasing in l2;

(b) The threshold z∗
1 is increasing in h1 and l1 but decreasing in π1.

As we can see from Theorem 4, while the ratio of the penalty cost to the lead time along
cannot determines which product should be started first, it continues to play a crucial role
in determining the optimal sequence. In particular, if πi/ li increases, then the set of state
for which starting the production of product i is at least as good as starting that of the other
product increases. The holding cost of product 1 also matters. As it increases, the risk of
starting the production of product 1 too soon increases, which reduces the set of state for
which the production of product 1 should be started first.

5 Models with multiple unconfirmed orders

For the general problem with at least two unconfirmed orders, we can compute the optimal
cost and find the optimal policy by using induction. However, the optimal policy of the
problem in general no longer possesses any structure even under ILR. To see this, let’s
consider the following example with three orders.

Example 1 The distributions of Xi , i = 1,2,3, are given by the following common formu-
las: bj = cρ

j

1 for j = 1,2,3, bj = cρ3
1ρ

j−3
2 for j = 4,5,6, bj = cρ3

1ρ
3
2ρ

j−6
3 for j = 7,8,9,

bj = cρ3
1ρ

3
2ρ

3
3ρ

j−9
4 for j = 10,11,12, and bj = 0 for j > 12. The value of c is chosen such

that the sum of bi is one in each case. For product 1, π1 = 4, h1 = 2, l1 = 2, ρ1 = ρ2 = ρ3 =
ρ4 = 1. For product 2, π2 = 3.1, h2 = 3, l2 = 2, ρ1 = ρ2 = 2, ρ3 = 0.5, and ρ4 = 0.1. For
product 3, π3 = 4, h3 = 3, l3 = 1, ρ1 = ρ2 = ρ3 = 3, and ρ4 = 2.

It is easy to verify that all the confirmation times in Example 1 have ILR. The optimal
policies of different cases are reported in Table 1. As we can see, when both the orders for
product 1 and product 2 are unconfirmed (the row for a∗(0,0,2)), neither the optimal time
to start the production of the first product nor the optimal sequence has a threshold structure.
The thresholds for product 1 and 2 are both at s = 4, which causes congestion. Therefore,
it is optimal to start product 1, which has a lower holding cost, at s = 2, which is sooner
than its threshold. For s ≤ 1, the optimal action is “wait” because neither of the orders is
very likely to be confirmed soon. For s = 3, the optimal action is also “wait” because at this
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Table 1 The optimal policies in Example 1

s 1 2 3 4 5 6 7 8 9 10 11 12

a∗(0,2,2) 0 0 0 1 1 1 1 1 1 1 1 1

a∗(2,0,2) 0 0 0 2 2 2 2 2 2 2 2 2

a∗(2,2,0) 0 0 0 0 0 0 0 0 0 3 3 3

a∗(0,0,2) 0 1 0 2 2 2 2 2 1 1 1 1

a∗(0,2,0) 0 0 0 1 1 1 1 1 1 1 3 3

a∗(2,0,0) 0 0 0 2 2 2 2 2 2 3 3 3

a∗(0,0,0) 0 1 0 2 2 2 2 2 1 3 3 3

point, starting product 1 will delay the production of product 2, and stating product 2 will
cause a high holding cost. The “wait-produce-wait” phenomenon also appears in the case
when all products are unconfirmed (the row for a∗(0,0,0)).

The optimal policy in general is complex because of, first, the linkage across orders
through capacity constraint, and second, the uncertain arrival times. What happens if we
ignore the linkage and/or the uncertainty when setting the thresholds? In what follows, we
consider two heuristics. In the threshold-based heuristic, we ignore the linkage across orders
and compute their thresholds independent of others. If it is not feasible due to capacity con-
straint, priority will be given to the order with the highest πi/ li ratio. The difference in cost
between the optimal policy and the heuristic measures the value of explicitly modeling the
capacity constraint. In the mean-based heuristic, not only do we ignore the linkage, we also
ignore the uncertainty of the order confirmation times. Every period, the supplier assigns
a time slot to each order based on their expected confirmation times. The assignments are
then updated over time when orders are confirmed. The difference in cost between the two
heuristics measures the value of capturing uncertainty.

5.1 Threshold-based heuristic

To measure the cost of not considering the capacity linkage across products when setting
thresholds, we construct the following threshold-based heuristic. For all unconfirmed orders,
we first compute the thresholds as if there were infinite capacity and hence orders could be
managed independently. That is, s∗

i is the smallest s such that
∑

j≥s+li+1 bi
j

∑
j≥s bi

j

− πi

πi + hi

≤ 0. (5)

Let k ∈ C such that
πk

lk
≥ πi

li
for all i ∈ C.

Let C̄1 be a subset of C̄ such that

s ≥ s∗
i for all i ∈ C̄1.

If C ∪ C̄1 is empty, then we wait; otherwise, we start the production of the product with
the greatest πi/ li ratio in C ∪ C̄1. As a special case, if C �= ∅ and C̄ = ∅, according to the
heuristic, we will start the production of product k, the product with the highest πi/ li ratio
for i ∈ C. In this case, the heuristic is optimal. In Appendix we provide a theoretical bound
for the cost of the heuristic (see Theorem 5).
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Table 2 The costs as a function of a holding cost

h1 0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8

�c 2.8 3.5 4.4 5.2 9.4 5.4 4.1 4.5 2.6 2.8

�cu 15.9 13.2 10.7 8.3 6.1 4.5 3.7 2.9 2.3 1.8

Table 3 The costs as a function of a delay penalty cost

π1 1 2 3 4 5 6 7 8 9 10

�c 0 0.1 0.3 9.6 5.2 2.9 1.9 0 0 0

�cu 3.0 3.0 4.1 5.3 8.4 11.7 15.0 18.6 22.8 26.7

5.2 Mean-based heuristic

To further measure the cost of ignoring the demand arrival time uncertainty, we construct
another heuristic, mean-based heuristic. In this heuristic, besides the capacity linkage, we
also ignore the uncertainty of the order confirmation times. Every period, the supplier as-
signs a time slot to each order based on their expected confirmation times. The assignments
are then updated over time when orders are confirmed.

At time s, let μi represent the conditional mean of Xi for all i ∈ C̄ and let μi = 0 for all
i ∈ C. In the mean-based heuristic, the supplier ignores the capacity constraint as well as the
uncertainty and plans as if order i would be confirmed in time μi in the future. As such, if
there were infinite capacity, then the supplier would start the production of product i at time
max{μi − li , s}, or when it is confirmed, whichever is sooner. Similar to the threshold-based
heuristic, at a certain time s, if s < μi − li for multiple products, the priority will be given
to the one with the highest πi/ li ratio.

5.3 Computational results

We let umb be the cost of implementing the mean-based heuristic and recall that utb is the
cost of implementing the threshold-based heuristic. We define

�c = utb − u

u
× 100,

and

�cu = umb − u

u
× 100.

Here �c measure the cost of ignoring the capacity linkage across products and �cu measures
the cost of ignoring both the capacity linkage and uncertainty.

For Tables 2 to 6, we use the parameters that we have used in Example 1 and assume that
there are three unconfirmed orders. In each of the tables, we change one parameter related
to order 1 while keeping all others unchanged. For the distributions that we use, all orders
will be confirmed at or before s = 12. We then report �c and �cu in each case. In each case,
we also calculate the analytical bound in Theorem 5 as a percentage over the minimal cost.

We can see from the tables that overall, even for three-product cases, the cost of ig-
noring the capacity linkage when setting the thresholds can be quite high, and the cost of
ignoring both capacity linkage and demand uncertainty, in most cases, can be ever higher.



444 Ann Oper Res (2016) 241:431–456

Table 4 The costs as a function of a lead time (l2 = 2, l3 = 1)

l1 1 2 3 4 5 6 7 8 9 10

�c 1.8 9.6 0.3 1.7 3.2 5.6 7.5 9.1 10.9 13.0

�cu 6.5 5.3 7.0 6.2 6.6 8.1 9.5 11.3 13.2 15.0

Table 5 The costs as a function of a lead time (l2 = 8, l3 = 1)

l1 1 2 3 4 5 6 7 8 9 10

�c 21.2 10.8 7.0 6.7 6.8 7.1 6.8 6.0 5.0 8.0

�cu 41.9 29.4 18.3 13.4 12.6 12.1 11.8 11.0 10 10.9

Table 6 The costs as a function
of a lead time (l2 = 8, l3 = 8) l1 1 2 3 4 5 6 7 8 9 10

�c 6.8 3.4 0 0 0 0 0 0 0 0

�cu 1.5 0.8 0 0 0 0 0 0 0 0

In most, although not all, cases, ignoring the demand uncertainty is costly. The threshold-
based heuristic is not always better than the mean-based heuristic (e.g., Table 4), which
means that in our context, ignoring the demand uncertainty can sometimes be good. One
possible outcome of ignoring capacity linkage when setting thresholds is congestion. To re-
duce congestion, one should shift the thresholds sooner so that they are spaced sufficiently
apart. The thresholds set under the mean-based heuristics are sometimes smaller than those
set under the threshold-based heuristic, which may reduce congestion.

The effects of lead time are summarized in Tables 4, 5, and 6. We first note from Table 4
that the costs of ignoring capacity linkage and demand uncertainty increase as l1 increases.
Is the value of l1 or the differences between l1 and the other two lead times that is driving the
results? To see this, we increase l2 to 8 in Table 5 and increase both l2 and l3 to 8 in Table 6.
Interestingly, in Tables 5 and 6, the �c and �cu actually become smaller as l1 increases, a
stark contrast to what happens in Table 4. In fact, as we can see in Table 6, when l2 = l3 = 8
and l1 is not too far from 8, both �c and �cu are zero. This suggests that it is the differences
among the lead times that matter (more).

To understand the effects of lead time, we need to first understand the effects of lead time
on the optimal ranking of orders. If we look at the πi/ li ratio, then an order with a shorter
lead time has a higher πi/ li ratio and hence should be processed sooner. This is because
processing an order with a short lead time will not cause much delay for other orders. If
we use the thresholds defined in (5) (i.e., s∗

i ) to rank orders, then the opposite is true; the
threshold is lower when the lead time is longer, therefore the order with a longer lead time
should be processed sooner. This is because the longer the lead time, the earlier one should
start production preemptively to avoid delay. The optimal response to an increase in lead
time is nontrivial.

In the threshold-based heuristic, we first compute s∗
i . For the orders whose s∗

i is smaller
than the current time s, we rank them together with the already confirmed orders by their
πi/ li ratio. For the orders whose s∗

i is greater than the current time s, however, we rank
them by their s∗

i values. We do the same in the mean heuristic except that we compute the
thresholds differently. This treatment, while natural and intuitive, is suboptimal in general.
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Table 7 The costs as a function
of the number of products Number of products 1 2 3 4 5 6

�c 0 7 6.3 33 23 23.6

�cu 106.8 83.6 100.2 157.7 116 115.8

Table 8 The costs change when
the products become more
different

Parameter range Original π [7,11] l[1,5] h[0,4]

�c 20.9 22.8 43.8 24.3

�cu 83.9 88.2 130.5 81.1

When the lead times of different orders are significantly different, it leads to significantly
different ranking of orders from the optimal solution.

Finally, in order to see the impact on the costs when the number of products increases,
we change the number of products from 1 to 6. We add product to the system one at a time.
To get a robust result, we randomly generate 10,000 examples. We generate πi and hi by
using continuous uniform distributions over [8,10] and [1,3], respectively. The lead times
are generated from a discrete uniform distribution over [2,4]. As we can see from Table 7, as
the number of products increases, both �c and �cu increase, although �c is more sensitive
to the number of products. In Table 8, we keep the number of unconfirmed product to be
six. We increase the range of the uniform distributions used for generating the penalty cost,
holding cost, and lead time one at a time. For example, we increasing the range from [8,10]
to [7,11] for the penalty cost whiling keeping other parameters unchanged. By doing that,
we make the six products more different from each other. We again randomly generate 8,000
examples. As we can see from the table, �c and �cu are particularly sensitive to the change
in lead time and they both become greater when the lead times are more different. From the
our numerical studies, we can conclude that the cost of ignoring the capacity linkage across
product is high when there are many products and their lead times are very different from
one another. It is always a bad idea to ignore demand uncertainty.

6 Discussion and concluding remarks

Motivated by applications in capital goods industries, we have constructed a model by dis-
crete time Markov decision process to capture the essence of the order fulfillment processes
when there are multiple different orders. We have provided a procedure to compute the
optimal policy recursively. However, the computational complexity increases exponentially
when the number of products or lead times increase. For problems with very long lead
times and many products, one may consider approximate dynamic programming or simpler
heuristic policies. In addition, there are a few practical issues that we have not in the model
directly considered, but one may (sometimes) encounter in capital goods industries. Some
of these issues can be addressed by slightly calibrating the basic model, while others require
new models and are perhaps well beyond the scope of the current paper.

In many cases, customers may not expect to have the product as soon as they place their
orders. Instead, they may allow the supplier some time, which is sometimes called order
lead time, to produce and deliver the order. The supplier won’t incur a delay penalty cost
until the customers expect to have the product. In this case, instead of the order confirmation
time, we need to reinterpret Xi as the time when the customers expect to have the product.
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Note that in practice the order lead time is often shorter than the time required to prepare and
deliver the order and the difference between the two is known as lead time gap (Christopher
2000).

We have assumed that the order lead time is determined by the customers. When it is
determined by the supplier, the market, or regulators, it is better known as due date. If the
due date is exogenously given by the market as an industry standard, or constrained by
technological limit, or by the regulators, then Xi should be interpreted as the time when
the order is due (Duenyas and Hopp 1995) and our previous analysis continues to apply.
However, if the due date is determined by the supplier, a new model is needed since the
action space is now different. It is a promising extension to combine due date setting and
timing of order fulfillment.

Other than order lead time and due date, additional issues include the possibility of or-
der cancellation, lead time uncertainty, common modules among orders, etc. Incorporating
some or all of these into the model will make the model formulation quite tedious. How-
ever, we believe that these issues will not alter the qualitative results in a significant way.
Neither do these issues present new computational challenges. Or the demand arrival time
depends on additional factors, such as stock market, weather, etc., that are observable to the
supplier. The supplier will update the distribution based on the latest information. In this
case, the addition of state variable will make the computation of the optimal policy more
challenging. Despite all these issues in practice, we believe that the results in this study
provide insights into the problem and are useful for firms in such industries to understand
the trade-offs they face. Our formulation is amenable for computation of optimal policies.
We highlight that it is important to incorporate uncertainty in planning and it is also impor-
tant to coordinate the fulfillment processes across products, especially when there are many
products.
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Appendix

Proof of Lemma 1 Note first that

f (s) = bs
∑

i≥s bi

(l + 1)π +
∑

i≥s+1 bi
∑

i≥s bi

[

π

l−1∑

j=0

(l − j)
bs+1+j

∑
i≥s+1 bi

+ h

∞∑

j=l+1

(j − l)
bs+1+j

∑
i≥s+1 bi

]

− π

l−1∑

j=0

(l − j)
bs+j

∑
i≥s bi

− h

∞∑

j=l+1

(j − l)
bs+j

∑
i≥s bi

= bs
∑

i≥s bi

(l + 1)π + 1
∑

i≥s bi

[

π

l−1∑

j=0

(l − j)(bs+1+j − bs+j )

+ h

∞∑

j=l+1

(j − l)(bs+1+j − bs+j )

]
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= 1
∑

i≥s bi

[

bs(l + 1)π + π

l−1∑

j=0

(l − j)(bs+1+j − bs+j )

+ h

∞∑

j=l+1

(j − l)(bs+1+j − bs+j )

]

.

By using the following identities:

l−1∑

j=0

(l − j)bs+1+j =
l−1∑

j=0

j+s+1∑

i=s+1

bi;
l−1∑

j=0

(l − j)bs+j =
l−1∑

j=0

s+j∑

i=s

bi; (6)

∞∑

j=l+1

(j − l)bs+1+j =
∞∑

j=l+1

∞∑

i=j+1

bs+i;
∞∑

j=l+1

(j − l)bs+j =
∞∑

j=l+1

∞∑

i=j

bs+i , (7)

we have

f (s) = 1
∑

i≥s bi

[

π

l+s∑

j=s

bj − h

∞∑

j=l+1+s

bj

]

= 1
∑

i≥s bi

[

π

∞∑

j=s

bj − (π + h)

∞∑

j=s+l+1

bj

]

= π − (π + h)

∑
j≥s+l+1 bj
∑

j≥s bj

.

Due to IFR assumption, the expression inside the square bracket is increasing in s. There-
fore, f (s) ≥ 0 if and only if s ≥ s∗. �

Proof of Proposition 1 For any s < s∗, starting production can’t be optimal because waiting
for one period and then starting production costs strictly less than immediately starting pro-
duction (Lemma 1). We show the optimal policy for s ≥ s∗ by contradiction. Suppose there
is an s ′ ≥ s∗ such that a∗(s ′) = 0.

Suppose a∗(s) = 0 for all s ≥ s ′. Let

cs = bs
∑

i≥s bi

(l + 1)π.

By Lemma 1, for any s ≥ s ′ we have

w(s,1) ≤ cs +
(

1 − bs
∑

j≥s bj

)

w(s + 1,1)

≤ cs +
(

1 − bs
∑

j≥s bj

)[

cs+1 +
(

1 − bs+1
∑

j≥s+1 bj

)

w(s + 2,1)

]

≤ · · ·
≤ cs +

(

1 − bs
∑

j≥s bj

)

cs+1 +
(

1 − bs
∑

j≥s bj

)(

1 − bs+1
∑

j≥s+1 bj

)

cs+2 + · · · .

Therefore immediately starting production is better than waiting until the order is confirmed
and hence there must be a finite s > s ′ such that a∗(s) = 1.
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We let

s ′′ = min
{
s : a∗(s) = 1 and s > s ′}.

By the definitions of s ′ and s ′′, we have a∗(s ′′−1) = 0 and a∗(s ′′) = 1. This is a contradiction
because we know from Lemma 1 that for any s ≥ s∗, immediately starting production costs
less than waiting for one period and then starting production. In conclusion, such s ′ does not
exist and hence a∗(s) = 1 for all s ≥ s∗. �

Proof of Lemma 2 Let

cs =
(

1 − bs
∑

i≥s bi

)

π2 + bs
∑

i≥s bi

[
(l1 + 1)π1 + (l2 + 1)π2 + l2π1

]
.

(a) Note first that

cs +
(

1 − bs
∑

j≥s bj

)

w(0,1, s + 1,2)

=
(

1 − bs
∑

j≥s bj

)

π2 + bs
∑

j≥s bj

(l1π1 + l2π2 + l2π1 + π1 + π2)

+
(

1 − bs
∑

j≥s bj

)[

l2π2 +
∑l2−1

j=0 (l1 + l2 − j)bs+j+1
∑

i≥s+1 bi

π1

+
∑∞

j=l2
bs+j+1

∑
i≥s+1 bi

u(0,2, s + 1 + l2)

]

=
(

1 − bs
∑

j≥s bj

)

π2 + l2π2 + bs
∑

j≥s bj

(l1π1 + l2π1 + π1 + π2)

+ 1
∑

j≥s bj

[

π1

l2−1∑

j=0

(l1 + l2 − j)bs+j+1 +
∞∑

j=l1

bs+j+1u(0,2, s + 1 + l2)

]

.

Also, by the definition of u(0,2, s),

w(0,1, s,2) ≤ l2π2 +
∑l2−1

j=0 (l1 + l2 − j)bs+j
∑

i≥s bi

π1

+
∑∞

j=l2
bs+j

∑
i≥s bi

[
bs+l2∑
i≥s+l2

bi

l1π1 +
(

1 − bs+l2∑
j≥s+l2

bj

)

u(0,2, s + 1 + l2)

]

.

Therefore,

f2(s) ≥
(

1 − bs
∑

j≥s bj

)

π2 + bs
∑

j≥s bj

(l1π1 + l2π1 + π1 + π2)

+ π1

∑l2−1
j=0 (l1 + l2 − j)bs+j+1

∑
j≥s bj

−
∑l2−1

j=0 (l1 + l2 − j)bs+j
∑

i≥s bi

π1 − l1π1
bs+l2∑
j≥s bj

= π1

∑s+l2
i=s bi

∑
i≥s bi

+ π2

≥ 0.
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The result hence follows.
(b) We show that under the condition, w(0,1, s,1) ≥ w(0,1, s,2) for all s. Let Xs be the

time when the order for product 1 is confirmed conditioning on that it is greater than s; that
is, Prob(Xs = i) = Prob(X = i|X ≥ s) for all i ≥ s. Then,

w(0,1, s,2) ≤ l2π2 + Eπ1(l1 + l2 − Xs)
+ + Eh1(Xs − l1 − l2)

+

≤ l2π2 + Eπ1(l1 + l2 − Xs)
+ + Eh1(Xs − l1)

+

≤ l2π2 + l2π1 + Eπ1(l1 − Xs)
+ + Eh1(Xs − l1)

+

≤ l2π2 + l1π2 + Eπ1(l1 − Xs)
+ + Eh1(Xs − l1)

+

= w(0,1, s,1).

The first inequality is because it is feasible but not necessarily optimal to start the production
of product 1 at time l2. The second and the third inequalities are obvious. The fourth follows
from the condition π1l2 ≤ π2l1. �

Proof of Theorem 2 Because w(0,1, s,1) ≥ w(0,1, s,2), we can simplify (4) to

u(0,1, s) = min
{
w(0,1, s,0),w(0,1, s,2)

}
.

The rest of the proof is similar to the proof of Proposition 1 and hence omitted. �

Proof of Lemma 3 Let s∗
1 be the threshold for product 1 defined in Sect. 3. For s ≤ s∗

1 − l2 −2,
following from similar arguments used in the proof of Lemma 2, we have

f2(s) = bs
∑

i≥s bi

[

π1

l2∑

i=0

bs+i

bs

+ π2

∑

i≥0

bs+i

bs

+ π2l1 − π1l2

]

.

Because of the ILR assumption, the expression inside the square bracket is decreasing in s.
For s ≥ s∗ − l2, then,

u(0,2, s + l2 + 1) = π1

l1−1∑

j=0

(l1 − j)
bs+1+l2+j

∑
i≥s+1+l2

bi

+ h1

∞∑

j=l1+1

(j − l1)
bs+1+l2+j

∑
i≥s+1+l2

bi

,

u(0,2, s + l2) = π1

l1−1∑

j=0

(l1 − j)
bs+l2+j

∑
i≥s+l2

bi

+ h1

∞∑

j=l1+1

(j − l1)
bs+l2+j

∑
i≥s+l2

bi

.

By using identities (6) and (7), we have

f2(s) = bs
∑

i≥s bi

[

(π1 + h1)

l1+l2−1∑

i=0

bs+1+i

bs

+ (π2 − h1)

∞∑

i=1

bs+i

bs

+ (π2l1 − π1l2) + (π1 + π2)

]

.

Under the conditions that X has ILR and π2 ≥ h1, f2(s) crosses zero at most once, and, if it
does, it is from above.

Finally, we shall show

lim
s→(s∗

1 −l2−1)−
f2(s) ≥ f2

(
s∗

1 − l2 − 1
) ≥ lim

s→(s∗
1 −l2−1)+

f2(s).
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The first inequality is true because based on the definition of s∗
1 , when s = s∗

1 , a∗(0,2, s) = 1,
not 0. The second inequality is because when s = s∗

1 − 1, a∗(0,2, s) = 0, not 1. In summary,
f2(s) may cross zero at most once, and, if it does, it is from above. We thus can conclude
that f2(s) ≤ 0 if and only if s ≥ s̄2. �

Proof of Lemma 4 We show that under the conditions, f1(s) crosses zero at most once
when s traverses from zero to infinity, and, if it does, it is from below.

f1(s) =
(

1 − bs
∑

i≥s bi

)

π2 + bs
∑

i≥s bi

[
(l1 + 1)π1 + (l2 + 1)π2 + l1π2

]

+
∑

i≥s+1 bi
∑

i≥s bi

[

π1

l1−1∑

j=0

(l1 − j)
bs+1+j

∑
i≥s+1 bi

+ h1

∞∑

j=l1+1

(j − l1)
bs+1+j

∑
i≥s+1 bi

+ (l1 + l2)π2

]

− π1

l1−1∑

j=0

(l1 − j)
bs+j

∑
i≥s bi

− h1

∞∑

j=l1+1

(j − l1)
bs+j

∑
i≥s bi

− (l1 + l2)π2

=
(

1 − bs
∑

i≥s bi

)

π2 + (π1 + π2)
bs

∑
i≥s bi

+ 1
∑

i≥s bi

[

bsl1π1 + π1

l1−1∑

j=0

(l1 − j)(bs+1+j − bs+j )

+ h1

∞∑

j=l1+1

(j − l1)(bs+1+j − bs+j )

]

.

By using identities (6) and (7), we have

f1(s) = π1 + π2 − (π1 + h1)

∑
j≥s+1+l1

bj
∑

j≥s bj

.

Part (c) is immediate. Part (a) follows because
∑

j≥s+1+l1
bj/

∑
j≥s bj is decreasing in s if

X has an IFR. Part (b) follows because f1(s) ≥ f (s) when π and h in f (s) are replaced by
π1 and h1, respectively. �

Proof of Theorem 3 (a) The proof is by contradiction. Suppose there is a ŝ such that
a∗(0,1, ŝ) = 0.

We first show that a∗(0,1, ŝ) = 0 implies a∗(0,1, s) = 0 for all s ≥ ŝ. This can be showed
by contradiction. If there is an s ≥ ŝ such that a∗(0,1, s) = 0 and a∗(0,1, s + 1) = 2. This
implies f2(s) ≤ 0. According to Lemma 3, we have f2(s +1) ≤ 0, which means that starting
the production of product 2 at s + 1 would be more costly than delaying the production until
one period later. So a∗(0,1, s + 1) = 0, which is a contradiction. Also, because of part (c)
of Lemma 4, if a∗(0,1, s) = 0, then a∗(0,1, s + 1) �= 1. Therefore, if a∗(0,1, ŝ) = 0, then
a∗(0,1, s) = 0 for all s ≥ ŝ.

We next show that such ŝ does not exist. Suppose it did, then

u(0,1, ŝ) = l1π1 + (l1 + l2)π2 + π2EXŝ

≥ l1π1 + (l1 + l2)π2 + h1EXŝ
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≥ π1E(l1 − Xŝ)
+ + h1E(Xŝ − l1)

+ + (l1 + l2)π2

= w(0,1, ŝ,1),

which is a contradiction. Therefore, such ŝ does not exist and “wait” can never be the optimal
action.

(b) Let δ = (w(0,1, s,2) − w(0,1, s,1))
∑

i≥s bi . To show the result, it suffices to show
that δ as a function of s crosses zero at most once when s traverses from zero to infinity, and
if it does, it does so from below. For s < s∗

1 − l2,

δ = π1

l2−1∑

j=0

(l1 + l2 − j)bs+j + (l1 + 1)π1

s∗
1 −1∑

j=s+l2

bj + π1

l1−1∑

j=0

(l1 − j)(bs∗
1 +j − bs+j )

+ h1

∞∑

j=l1+1

(j − l1)(bs∗
1 +j − bs+j ) − l1π2

∞∑

i=s

bi

= (π1l2 − l1π2)

∞∑

i=s

bi − π1

l2−1∑

j=0

∞∑

i=s+j+1

bi + π1l1

s∗
1 −1∑

i=s

bi + π1

s∗
1 −1∑

j=s+l2

bj

+ π1

l1−1∑

j=0

j∑

i=0

(bs∗
1 +i − bs+i ) + h1

∞∑

j=l1+1

∞∑

i=j

(bs∗
1 +i − bs+i )

= (π1l2 − l1π2)

∞∑

i=s

bi − (π1 + h1)

l1+s∗
1∑

j=l1+s+1

∞∑

i=j

bi + π1

s∗
1∑

j=s+l2+1

∞∑

i=j

bi + π1

s∗
1 −1∑

j=s+l2

bj .

For s ≥ s∗
1 − l2,

δ = π1

l2−1∑

j=0

(l1 + l2 − j)bs+j − l1π2

∞∑

i=s

bi

+ π1

l1−1∑

j=0

(l1 − j)(bs+l2+j − bs+j ) + h1

∞∑

j=l1+1

(j − l1)(bs+l2+j − bs+j )

= π1

l2−1∑

j=0

j∑

i=0

bs+i + π1l1

l2+s−1∑

i=s

bi − l1π2

∞∑

i=s

bi

+ π1

l1−1∑

j=0

j∑

i=0

(bs+l2+i − bs+i ) + h1

∞∑

j=l1+1

∞∑

i=j

(bs+l2+i − bs+i )

=
∞∑

i=s

bi

[

π1l2 − π2l1 − (π1 + h1)

l1+l2∑

j=l1+1

∑
i≥j+s bi

∑
i≥s bi

]

,

which, under ILR assumption, can cross zero at most once and if it does, it does so from
below. Clearly, if s∗

1 ≤ l2, then w(0,1, s,2) − w(0,1, s,2) is increasing in s ∈ [0,∞) and
the result is immediate. So we just need to show the result when s∗

1 > l2. Let

g1(s) = (π1l2 − l1π2)

∞∑

i=s

bi − (π1 + h1)

l1+s∗
1∑

j=l1+s+1

∞∑

i=j

bi + π1

s∗
1∑

j=s+l2+1

∞∑

i=j

bi + π1

s∗
1 −1∑

j=s+l2

bj ,
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and

g2(s) = (π1l2 − π2l1)

∞∑

i=s

bi − (π1 + h1)

l1+l2+s∑

j=l1+s+1

∞∑

i=j

bi .

Both g1 and g2 are defined in [0,∞) and δ = g1(s) for s < s∗
1 − l2 and δ = g2(s) for s ≥

s∗
1 − l2. We first show that δ(s) is increasing initially and then decreasing in s ∈ (0, s∗

1 − l2]
(i.e., quasi-concave if s were continuous).

g1(s) − g1(s − 1) = −(π1l2 − π2l1)bs−1 + (π1 + h1)

∞∑

i=l1+s

bi − π1

∞∑

i=s+l2−1

bi.

Consider two cases. First, if l2 − 1 > l1, then,

g1(s) − g1(s − 1) = bs−1

[

−(π1l2 − π2l1) + π1

l2−1∑

i=l1+1

bi+s−1

bs−1
+ h1

∞∑

i=l1+1

bi+s−1

bs−1

]

.

Since the expression inside the square bracket is decreasing in s under ILR assumption, g1

is quasi-concave. Second, if l2 − 1 ≤ l1, then,

g1(s) − g1(s − 1)

= bs−1

{

−(π1l2 − π2l1) + (π1 + h1)

∞∑

i=l2

bi+s−1

bs−1

[ ∑
i≥s+l1

bi
∑

i≥s+l2−1 bi

− π1

π1 + h1

]}

. (8)

Because of IFR assumption, we know
∑

i≥s+l1
bi

∑
i≥s+l2−1 bi

≥
∑

i≥s∗
1 −l2+l1

bi

∑
i≥s∗

1 −1 bi

≥
∑

i≥s∗
1 +l1

bi

∑
i≥s∗

1 −1 bi

≥ π1

π1 + h1
,

where the last inequality is because of the definition of s∗
1 . Therefore, the expression within

{ } in (8) is decreasing in s under ILR assumption and hence g1 is also quasi-concave in this
case. Finally,

δ
(
s∗

1 − l2
) − δ

(
s∗

1 − l2 − 1
) = g2

(
s∗

1 − l2
) − g1

(
s∗

1 − l2 − 1
)

= −(π1l2 − π2l1)bs∗
1 −l2−1 + (π1 + h1)

∞∑

i=l1+s∗
1 −l2

bi − π1

∞∑

i=s∗
1 −1

bi.

From the previous analysis, we know that if g1(s
∗
1 − l2 − 1) − g1(s

∗
1 − l2 − 2) ≤ 0, then

δ(s∗
1 − l2) − δ(s∗

1 − l2 − 1) ≤ 0. Therefore, we can conclude that δ is quasi-concave in
(0, s∗

1 − l2].
Note then that g1(s) ≤ g2(s) for s < s∗

1 − l2 because of the threshold structure of the
optimal policy for product 1. Consider the following two cases. If g2(s

∗
1 − l2) ≤ 0, then

g1(s) ≤ g2(s) ≤ 0 for all s < s∗
1 − l2. So in this case, if δ crosses zero at all, it must do so at

some s ∈ [s∗
1 − l2,∞) and from below. Suppose g2(s

∗
1 − l2) > 0. Then because δ(s) is quasi-

concave in (0, s∗
1 − l2], if δ crosses zero, then it must do so at some s ∈ (0, s∗

1 − l2 − 1) from
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below. Let z∗
1 = inf{s : w(0,1, s,2)−w(0,1, s,1) ≥ 0}. Then, a∗(0,1, s) = 2 for s < z∗

1 and
a∗(0,1, s) = 1 otherwise. �

Proof of Theorem 4 (a) Examining the behavior of z∗
1 is equivalent to examining the be-

havior of δ; that is, to show the results, it suffices to show that δ is decreasing in π2 but
increasing in l2. This is obviously true for π2. For l2, denote δ and gi , where i = 1,2, as
δ(l2) and gi(s, l2), respectively, to make their dependence on l2 explicit. Suppose s∗

1 > s.
Then, for l2 < s∗

1 − s,

δ(l2) = g1(s, l2),

which is obviously increasing in l2. For l2 ≥ s∗
1 − s, we consider l2

2 > l1
2 ≥ s∗

1 − s. Then,

δ
(
l2
2

) − δ
(
l1
2

) = g2

(
s, l2

2

) − g2

(
s, l1

2

)

= (
l2
2 − l1

2

)
π1

∞∑

i=s

bi − (π1 + h1)

l1+l22∑

j=l1+l12+1

∞∑

i=j+s

bi

≥ (
l2
2 − l1

2

)
π1

∞∑

i=s

bi − (π1 + h1)
(
l2
2 − l1

2

) ∞∑

i=s+l1+l12+1

bi

= (
l2
2 − l1

2

)
(π1 + h1)

∞∑

i=s

bi

(
π1

π1 + h1
−

∑∞
i=s+l1+l12+1 bi

∑∞
i=s bi

)

.

From the definition of s∗
1 and the fact that s∗

1 ≤ s + l1
2 , we have

π1

π1 + h1
≥

∑∞
i=s∗

1 +l1+1 bi

∑∞
i=s∗

1
bi

≥
∑∞

i=s+l12+l1+1 bi

∑∞
i=s+l12

bi

≥
∑∞

i=s+l12+l1+1 bi

∑∞
i=s bi

.

Therefore δ(l2
2) − δ(l1

2) ≥ 0 and δ is also increasing in this region. Finally, since

δ
(
s∗

1 − s
) − δ

(
s∗

1 − s − 1
) = g2

(
s, s∗

1 − s
) − g1

(
s, s∗

1 − s − 1
)

= π1

( ∞∑

i=s

bi −
∞∑

i=s∗
1 −1

bi

)

,

which is positive for s∗
1 > s. When s∗

1 ≤ s, δ(l2) = g2(s, l2) for all l2 and hence the result
follows easily.

(b) We only provide the proof for the statement about h1; results about p1 and l1 can
be shown analogously. To show that z∗

1 is increasing in h1, it suffices to show that δ is
decreasing in h1. Similarly, we denote δ, s∗

1 , and gi , i = 1,2, as δ(h1), s∗
1 (h1), and gi(s, h1),

respectively, for ease of presentation. Let

s−1 = sup

{

h1 :
∑

j≥s+l1+1 bj
∑

j≥s bj

− π1

π1 + h1
= 0

}

;

that is, s−1 is the inverse function of s∗
1 and it is increasing. For h1 ≤ s−1(s + l2), δ(h1) =

g2(s, h1), which is obviously decreasing in h1.
For h1 > s−1(s + l2), δ(h1) = g1(s, h1). Let h2

1 > h1
1 > s−1(s + l2). Then, s∗

1 (h2
1) ≥ s∗

1 (h1
1)

and
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g1

(
s, h2

1

) − g1

(
s, h1

1

) = −(
h2

1 − h1
1

)
l1+s∗

1 (h1
1)∑

j=l1+s+1

∞∑

i=j

bi − (
π1 + h2

1

)
l1+s∗

1 (h2
1)∑

l1+s∗
1 (h1

1)+1

∞∑

i=j

bi

+ π1

s∗
1 (h2

1)∑

j=s∗
1 (h1

1)+1

∞∑

i=j

bi + π1

s∗
1 (h2

1)−1∑

j=s∗
1 (h1

1)

bj

= −(
h2

1 − h1
1

)
l1+s∗

1 (h1
1)∑

j=l1+s+1

∞∑

i=j

bi − (
π1 + h2

1

)
l1+s∗

1 (h2
1)∑

l1+s∗
1 (h1

1)+1

∞∑

i=j

bi

+ π1

s∗
1 (h2

1)−1∑

j=s∗
1 (h1

1)

∞∑

i=j

bi

≤ −(
h2

1 − h1
1

)
l1+s∗

1 (h2
1)∑

j=l1+s+1

∞∑

i=j

bi

≤ 0.

The first inequality above is because of the definition of s∗
1 . So δ is also decreasing in this

region. Finally,

δ
(
s−1(s + l2)

) − lim
h1→[s−1(s+l2)]+

δ(h1)

= g2
(
s, s−1(s + l2)

) − lim
h1→[s−1(s+l2)]+

g1(s, h1)

= −(
π1 + s−1(s + l2)

)
l1+l2+s∑

j=l1+s+1

∞∑

i=j

bi − π1

s∗
1 −1∑

j=s+l2

bj

+ lim
h1→[s−1(s+l2)]+

{

(π1 + h1)

l1+s∗
1∑

j=l1+s+1

∞∑

i=j

bi − π1

s∗
1∑

j=s+l2+1

∞∑

i=j

bi

}

.

Since s∗
1 → s + l2 + 1 as h1 approaches s−1(s + l2) from the right, we therefore have

δ
(
s−1(s + l2)

) − lim
h1→[s−1(s+l2)]+

δ(h1) = (
π1 + s−1(s + l2)

) ∞∑

i=s+l1+l2+1

bi − π1

∞∑

i=s+l2

bi

= 0,

where the last equality is due to the definition of s−1. So δ is decreasing in h1 in [0,∞) and
the result follows. �

Theorem 5 Let utb(x, s) be the cost of the threshold-based heuristic. Of all N orders, m

of them have not been confirmed. Let δ(k) = (n1, n2, . . . , nk) represents a permutation of
(1,2, . . . , k). Let Λ(k) be the set of all possible permutations. Then,

u(x, s) ≤ utb(x, s) ≤ max
δ(N)∈Λ(N)

[

ln1πn1 + (ln1 + ln2)πn2 + · · · +
N∑

i=1

lni
πnN

]

+
m∑

i=1

πi.
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Proof The first inequality is obvious. For the second, suppose (n1, n2, . . . , nN) represent
the order by which the products are produced; that is, product n1 is produced first, n2, the
second, etc. By the heuristic, the supplier may start the production of a product either be-
cause an order have been confirmed or because the time has passed a threshold and hence
production must be started preemptively.

If product ni ∈ C, then its cost is upper bounded by (ln1 + · · · + lni−1 + lni
)πni

; that is, its
cost is highest when its order is confirmed when the production of product n1 is started.

Suppose that product ni ∈ C̄. If product ni is produced after its order is confirmed, then its
cost is upper bounded by (ln1 + · · · + lni−1 + lni

)πni
. If product ni is produced preemptively

before its order is confirmed, then its cost is upper bounded by (lni
+ 1)πni

because the
strategy of producing it as soon as the order is confirmed but not before is a feasible strategy.
But (lni

+ 1)πni
is upper bounded by (ln1 + · · · + lni−1 + lni

)πni
+ πni

. The total number of
products in C̄ is m. Therefore, given a sample path (n1, n2, . . . , nN), the cost of the heuristic
is upper bounded by

[

ln1πn1 + (ln1 + ln2)πn2 + · · · +
N∑

i=1

lni
πnN

]

+
m∑

i=1

πi,

and hence the result follows.
The bound is independent of time and distributions of confirmation times. Its computa-

tion is straightforward. The cost bound is constructed by computing the maximal cost for
each product under the heuristic. Each permutation (n1, n2, . . . , nN) represents a possible
sequence by which the products are produced. For an arbitrary product ni , its cost can’t be
higher than (ln1 + ln2 + · · · + lni

+ 1)πni
. From the bound of the heuristic, one can com-

pute the maximal cost of not considering the capacity linkage across products. Based on our
numerical studies, unfortunately, the bound is not very tight. �
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