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Ambulance offload delays have recently become one of the most significant operational challenges for
Emergency Medical Services (EMS) providers. Offload delays occur when an ambulance arriving at a
hospital Emergency Department (ED) is blocked until a bed becomes available for the patient. To formally
investigate the effect of patient routing decisions on EMS offload delays, we introduce a stylized
queueing network model with blocking. Following a decomposition approach, we develop an approx-
imation scheme to find explicit solutions that can be used to find proper patient allocation policies to
multiple hospitals in a region. We introduce a Markov chain representation for a single ED network and
solve for its exact steady state distribution. A comprehensive numerical study is carried out to validate
the approximation approaches and to gain insight into ambulance offload delays. By keeping the total
offload delays at minimal levels, we observe that it is better to load larger EDs more heavily than smaller
ones due to resource pooling.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Emergency Medical Services (EMS) are responsible for trans-
ferring patients to Emergency Departments (ED) within a target
response time. Sometimes, upon arrival at a highly congested ED,
an ambulance is forced to wait to offload a patient until a bed
becomes available. This waiting time is referred to as offload delay
in North America, or access block in Australia. In some countries,
such as the United States, an ED can declare diversion status if it is
overcrowded [1]. For EMS management, diversion means that
patients should be routed to other less crowded EDs. Diversion, or
reallocating patients to another regional hospital, can be key in
alleviating overall offload delays experienced, but entails higher
costs to healthcare systems. In addition, offload delays increase
actual EMS response times and waste scarce resources. Thus, off-
load delays are a pressing concern for EMS management.

Ambulance offload delays have attracted the attention of
researchers and practitioners in the past decade. Studies on
ambulance offload delays can be categorized as either observa-
tional or analytical. Observational studies focus on identifying the
relationships between offload delays and hospital congestion. A
survey of such studies can be found in Ting [2] and Taylor et al. [3].
r Ghate.
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More details can be found in Silvestri et al. [4] and Silvestri et al.
[5]. Analytical studies on offload delays utilize queueing theory.
Specifically, such studies are related to queueing networks with
blocking and priority. Queueing models are widely used in service
systems analysis to improve customer service. We refer the reader
to Formundam and Herrmann [6] and Green [7] for a compre-
hensive review on the use of queueing theory in healthcare sys-
tems. We also refer to Almehdawe et al. [8] for a summary of some
queueing works related to hospital bed use and allocation. Other
related references are Kao and Tung [9], Gorunescu et al. [10],
Davies and Davies [11], Masselink et al. [12], Côté and Stein [13],
Knight et al. [14] and Gorunescu et al. [15].

The problem of ambulance allocation to regional hospitals was
studied recently by Leo et al. [16]. In their Mixed Integer Pro-
gramming model, they consider allocating ambulance and walk-in
patients simultaneously to regional hospitals by minimizing their
travel and waiting times. Then they recommend reorganization of
the EMS network based on those results. Compared to the model
developed in this paper, we assume that only patients arriving by
an ambulance can be allocated by the EMS dispatcher, while walk-
in patients select by themselves the ED to which they will go.

The queueing network investigated in this paper is introduced
for the analysis and design of EMS and is similar in structure to
that in Almehdawe et al. [8], although the objectives, model
assumptions, and methodologies are different. While the objective
of Almehdawe et al. [8] is to conduct a performance analysis of
EMS, the objective of this paper is to develop an optimization
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Fig. 1. An EMS-ED queueing network for a region of 3 hospitals.
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method for the design of EMS. In Almehdawe et al. [8], the pre-
emption priority is assumed for ambulance patients. In this paper,
the non-preemption priority is assumed. In Almehdawe et al. [8],
the ambulance transit time is considered to be negligible. In this
paper, the ambulance transit time is assumed to have an expo-
nential distribution. As a result, the queueing network becomes far
more complicated and the method developed in Almehdawe et al.
[8] to derive the steady state probability distributions does not
work well due to the curse of dimensionality. In addition, the
method used in Almehdawe et al. [8] is not effective in optimi-
zation. Thus, a decomposition approach is utilized in this paper,
and the matrix-analytic methods and some classical queueing
results are applied, at both the hospital level and the region level,
to analyze two levels of the queueing network individually.

In the queueing network developed in this paper (see Fig. 1),
two types of patients are served: ambulance patients and walk-in
patients. We assume that ambulance patients have higher service
priority over walk-in patients (see [8] for details on the validity of
this assumption). Our approach is to decompose the queueing
network into subsystems, each containing one ED. First, we
introduce an approximation model for each individual system so
that explicit (but approximate) results can be obtained for per-
formance measures such as the mean waiting time of ambulance
patients (offload delays). The results are used to select system
parameters to minimize the mean offload delays in a given region.
Second, we study individual subsystems analytically. Under certain
assumptions, we use results from individual subsystems to pro-
duce various performance measures of the queueing network. The
exact results for individual subsystems are used to check the
quality of the parameters selected by using the approximate
models. In summary, in this paper, we develop a method to find
how to allocate ambulance patients to different hospitals in a
given region. We make the following contributions:

� We model the complex problem of offload delays in terms of
hospital congestion and EMS system congestion.

� We develop an approximation scheme for individual EDs per-
formance measures and validate the approximation via
simulation.

� We construct and solve an optimization problem to find the
optimal allocation of ambulance patients to each ED in a region.
� We find explicitly the waiting time distribution for a multi-
server queueing system with non-preemptive priorities and
blocking.

The rest of the paper is organized as follows. In Section 2, we
introduce the EMS system of interest and describe the steps for
model approximation and the optimization of the allocation of
ambulance patients. In Section 3, we introduce an M½2�=M=c non-
preemptive priority queue and an optimization problem for the
allocation of ambulance patients. In Section 4, we define a One-ED
network and apply matrix-analytic methods to validate the
approximation scheme of Section 3. A numerical analysis is carried
out in Section 5, where issues such as model validation and opti-
mal allocation of ambulance patients are addressed. Section 6
concludes the paper. Some technical details are collected in
Appendices 1–3.
2. The EMS system and solution approaches

We consider an EMS system with N ambulances that serve K
hospitals, each with an ED. When the dispatching center receives
an emergency call requiring an ambulance, an ambulance is dis-
patched to the call scene, if one is available. Upon arrival, the
paramedic team apply the basic life saving procedure. If the
patient requires transport to a hospital, the paramedics load him
into the ambulance. Then they transfer the patient to one of the K
regional hospitals. The time to reach the patient, load him into the
ambulance and then transfer him into the ED is referred to as the
patient transit time. We refer to such patients as ambulance
patients. Patients may alternatively go to one of the K EDs by
themselves. We refer to such patients as walk-in patients. In each
ED, both ambulance patients and walk-in patients are served.
Ambulance patients have higher service priority. That is: when an
ED bed becomes available, it will be assigned to a waiting ambu-
lance patient. If there is no waiting ambulance patient, the bed
becomes available to walk-in patients. The service of both types of
patients cannot be interrupted. Thus, if an ambulance patient sees
all ED beds are occupied upon arrival (i.e., no resource to serve the
patient), the patient and its ambulance have to wait, and this
waiting time is referred to as ambulance offload delay. The ambu-
lance becomes available when the ambulance patient is admitted
to the ED. Within each priority group of patients at one ED,
patients are served on a first-come-first-served basis. A patient
leaves the system immediately after his service is done.

Focusing on the movement of ambulances and patients, the
EMS system can be modeled as a queueing network as shown in
Fig. 1, which is defined explicitly as follows:

Patient arrival processes: Ambulance patients call the EMS
according to a Poisson process with parameter λa. Walk-in patients
arrive at the k-th ED according to a Poisson process with para-
meter λw;k, for k¼ 1;2;…;K . All the Poisson processes are inde-
pendent. The assumption of Poisson arrivals is supported by
empirical studies (see Channouf et al. [17] and the references
therein). Justification of the arrival processes can also be found in
Almehdawe et al. [8].

Routing probabilities: Upon arrival, an ambulance patient will
be transferred to the k-th ED with routing probability pk, for
k¼ 1;2;…;K , if an ambulance is available at that moment; other-
wise, the patient is lost. Thus, we must have p1þp2þ⋯þpK ¼ 1.
One of the main issues addressed in this paper is how to choose
the routing probabilities to minimize the overall offload delays.

Patient transit time: The transit time from dispatching the
ambulance to the call scene until it arrives to a hospital is expo-
nentially distributed with parameter μT ;k. Mateo Restrepo and
Topaloglu [18] and the references therein use this assumption and
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argue that the time spent by an ambulance at the scene typically
dominates the travel time.

ED service capacity: At the k-th ED, there are ck beds available to
serve patients. A bed is considered to be the combination of a real
hospital bed, nurses, doctors, and others. The service time of one
bed (to be referred to as a server) at the k-th ED is exponentially
distributed with parameter μk.

Patient service priority: In each ED, ambulance patients have
non-preemptive service priority over walk-in patients. Thus, when
a bed becomes available, it is assigned to a waiting ambulance
patient, if there is one. The available bed is assigned a waiting
walk-in patient only if there is no waiting ambulance patient. Once
a walk-in patient enters a bed, his service will not be interrupted.
See [8] for more details on this assumption.

To analyze the queueing network described, a quasi-birth-and-
death (QBD) process can be introduced and matrix-geometric
solutions can be obtained for computing performance measures
(see Neuts [19]). Since the total number of ambulances is finite, the
operations in all K EDs are not independent. Since the service
discipline is non-preemption, the service of ambulance patients is
affected by the service of walk-in patients. Thus, it is a tedious
process to introduce proper Markov chains for the EMS system
and, even if that can be done, the Markov chain is too big to be
analyzed efficiently.

In this paper, we develop two approximation approaches to
study the system:

� First, we introduce an M½2�=M=c non-preemptive priority queue
to approximate individual EDs, which shall be defined and
analyzed explicitly in Section 3. The M½2�=M=c queueing model
gives explicit expressions for an estimate of the mean ambu-
lance offload delays. The explicit results of the approximation
models can be used to optimize the selection of routing
probabilities to reduce the mean ambulance offload delays.

� Second, we consider the special EMS system with K¼1 in Sec-
tion 4. We call this case the One-ED network. By using the
classical matrix-analytic methods, exact results can be obtained
for various performance measures. The results for the One-ED
network are considered approximations to that of the individual
EDs in the EMS system with K41.

The approximation approaches work well if the K EDs operate
independently, which is guaranteed if the loss probability of
ambulance patients is zero. Thus, throughout this paper, we make
the following assumption:

Assumption: In the EMS system, the loss probability of
ambulance patients is close to zero.

The quality of the approximation approaches, which will be
validated through simulation in Section 5, depends largely on this
assumption. In practice, an EMS normally operates at low utiliza-
tion levels (30% or less) [20]. That is: the probability of having all
the ambulances busy is small. Thus, we assume that at least one
ambulance is available all of the time. Therefore, the assumption is
justified from application's point of view.
3. An M½2�=M=c non-preemptive priority queue and ambulance
routing

If the loss probability of ambulance patients is close to zero, the
arrival rate of ambulance patients to an ED is given approximately
by pλa, where p is the routing probability to the ED. Ignoring the
transit stage, the arrival process of ambulance patients to the ED
can be approximated by a Poisson process with parameter pλa.
This indicates that the ED part of a One-ED network can be
approximated by an M½2�=M=c non-preemptive priority queue,
which is defined as follows:

� Ambulance patients arrive according to a Poisson process with
parameter pλa.

� Walk-in patients arrive according to a Poisson process with
parameter λw, which is independent of the ambulance patients'
arrival process.

� The service time of a patient, regardless of its type (ambulance
patient or walk-in patient), has an exponential distribution with
parameter μ.

� There are c identical servers.
� Ambulance patients have non-preemptive service priority over

walk-in patients. That is: if a server becomes available, it will
first be assigned to an ambulance patient, if there is one.
However, the service of a walk-in patient will not be interrupted
by the arrivals of ambulance patients.

The M½2�=M=c non-preemptive priority queue has been studied
extensively and explicit formulas have been obtained for its mean
waiting times and mean queue lengths. In this paper, we are
interested in the waiting times of the two types of customers.
Denote by cWa the waiting time in the queue of an arbitrary
ambulance patient (i.e., a high priority customer) and cWw the
waiting time in the queue of an arbitrary walk-in patient (i.e., a
low priority customer). Let σ ¼ pλa=ðcμÞ and ρ¼ ðpλaþ
λwÞ=ðcμÞ ¼ σþλw=ðcμÞ. If ρo1, it is well-known that (see Gross
et al. [21]):

E½cWa� ¼
1

1�σ
c!ð1�ρÞcμ

Xc�1

n ¼ 0

cρ
� �n� c

n!
þcμ

 !�1

;

E½cWw� ¼
1

1�σð Þ 1�ρ
� � c!ð1�ρÞcμ

Xc�1

n ¼ 0

cρ
� �n� c

n!
þcμ

 !�1

: ð1Þ

The mean queue lengths for both types of patients, denoted as
E½bqa� and E½bqw�, can be obtained by using Little's Law:

E½bqa� ¼ pλaE½cWa� and E½bqw� ¼ λwE½cWw�: ð2Þ

The mean waiting time of ambulance patients E½cWa� is used to
approximate the mean ambulance offload delay in the ED. The
function E½cWa� is also used in an optimization problem for the
allocation of ambulance patients, where the following property
plays an important role.

Lemma 1. The function E½cWa� is convex in σ for 0rσo1.

Proof. First note that the expression for E½cWa� in Eq. (1) can be
rewritten, in terms of the well-known Erlang delay formula Bðc;ρÞ,
as

E½cWa� ¼ 1
cμð1�σÞBðc;ρÞ; ð3Þ

where

Bðc;ρÞ ¼ 1þc!ð1�ρÞ
Xc�1

n ¼ 0

cρ
� �n� c

n!

 !�1

: ð4Þ

By [22] and [23], Bðc;ρÞ is convex in ρ. Since ρ¼ σþλw=ðcμÞ, it is
easy to see that the Erlang delay formula is strictly increasing in ρ
(then in σ). The first order derivative of Bðc;ρÞ is positive. The
second order derivative of [3] is given by:

d2

dσ2

Bðc;ρÞ
ð1�σÞ

� �
¼ 2Bðc;ρÞ
ð1�σÞ3

þ2

d
dσ

Bðc;ρÞ
ð1�σÞ2

þ
d2

dσ2 Bðc;ρÞ
ð1�σÞ ð5Þ



Fig. 2. One ED network.
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which is nonnegative. Consequently, E½cWa� is convex in σ. This
completes the proof of the lemma.□

Allocation of ambulance patients: We now use the explicit
results above to optimize the allocation of ambulance patients by
finding the best routing probabilities, with respect to offload
delays. To obtain the offload delays of ambulances, all K EDs have
to be considered simultaneously. Recall that the total arrival rate of
ambulance patients to the K EDs is λa. Then the ambulance
patients' arrival rate for the k-th ED is pkλa. For the k-th ED, recall
that (i) the number of servers is ck; (ii) the service rate is μk; and
(iii) the arrival rate of walk-in patients is λw;k. In Eq. (1), we add
subscript k to variables cWa, μ, ρ, c, and p. Then an expression for
the mean waiting time of ambulance patients (or the mean offload
delay) can be obtained from Eq. (1). Consequently, the average
offload delays of ambulances can be obtained as the weighted
average:

PK
k ¼ 1 pkE½cWa;k�.

To minimize the average offload delay, we need to ensure that
the mean offload delays in individual EDs are finite. To achieve
that, we must ensure that

(a) the system has enough capacity to serve all ambulance
patients who are not lost; and

(b) individual EDs have enough capacity to serve all ambulance
patients arrived to them.

Condition (a) is equivalent to assuming that σko1, where
σk ¼ pkλa=ðckμkÞ, for k¼ 1;2;…;K . Let pðmaxÞ

k ¼ ckμk=λa. Then con-
dition (a) holds if pkopmax

k . To ensure condition (b), we must have

λao
XK
k ¼ 1

ckμk: ð6Þ

If condition (6) holds, then the set of feasible routing probabilities
fðp1;…; pK Þ : pkopðmaxÞ

k ; k¼ 1;…;K;
PK

k ¼ 1 pk ¼ 1g is nonempty.
Now, we are ready to propose the following optimization pro-

blem to find the routing probabilities fp1;…; pKg that minimize the
average ambulance offload delays:

min
ðp1 ;…;pkÞ

XK
k ¼ 1

pkE½cWa;k� ¼
XK
k ¼ 1

pk
1�σk

ck!ð1�ρkÞckμk

Xck �1

n ¼ 0

ckρk

� �n� ck

n!
þckμk

 !�1

s:t:
XK
k ¼ 1

pk ¼ 1;

0rpkrpðmaxÞ
k ; for k¼ 1;2;…;K : ð7Þ

where ρk ¼ σkþλw;k=ðckμkÞ, for k¼ 1;2;…;K . In optimization pro-
blem (7), without loss of generality, the condition pkopmax

k is
related to pkrpmax

k . Under condition (6), an optimal solution to (7)
exists.

By Lemma 1 and ρk ¼ σkþλw;k=ðckμkÞ, for k¼ 1;…;K , the objec-
tive function in (7), which is separable, is convex in fσ1;…;σKg and,
consequently, convex in fp1;…; pKg. The constraints in (7) are linear.
Thus, the optimization problem is a convex program, which can be
solved effectively by existing methods. For the numerical examples
presented in Section 5, we solve the above optimization problem
using the fmincon solver in Matlab where the interior-point algorithm
is used.
4. The One-ED system and matrix-geometric solutions

The One-ED system is defined in exactly the same way as the
EMS system with K¼1 defined in Section 2 (See Fig. 2). For
notational convenience, in this section, we remove subscript k
from system parameters μT ;k, μk, ck, pk, λw;k, and other system
variables. We still use parameter λa for the total arrival rate of
ambulance patients, and pλa for the arrival rate of ambulance
patients to the One-ED system. To analyze the One-ED system, we
define three state variables:

qT(t): The number of ambulance patients in transit at time t.
qs(t): The number of both ambulance and walk-in patients in

service and ambulance patients waiting for service at time t.
qw(t): The number of walk-in patients waiting for service at time t,

if qsðtÞZc; otherwise (i.e., qsðtÞoc), qwðtÞ ¼ �1. We call
qw(t) the queue length of waiting walk-in patients with the
understanding that, if qwðtÞ ¼ �1, the queue length is zero.

It is easy to see that fðqwðtÞ; qsðtÞ; qT ðtÞÞ; tZ0g is a continuous
time Markov chain (CTMC). We call qw(t) the level variable and
fqsðtÞ; qT ðtÞg the phase variable. Let Ω be the state space of the
Markov chain fðqwðtÞ; qsðtÞ; qT ðtÞÞ; tZ0g. Let Ωn be set of states in
level n, i.e., the subset of Ω such that qwðtÞ ¼ n, for
n¼ �1;0;1;2;….

Ω�1 ¼ fð�1; i; jÞ : 0r irc�1; 0r jrNg;
Ωn ¼ fðn; i; jÞ : cr ircþN; 0r jrN; i�cþ jrNg; for n¼ 0;1;2;…:

ð8Þ
Then we have Ω¼Ω�1 [ Ω0 [ Ω1 [ …. Note that levels n¼ 0;1;
2;… have the same number of states. The infinitesimal generator of
fðqwðtÞ; qsðtÞ; qT ðtÞÞ; tZ0g can be given as

Q ¼

�1
0
1
⋮

A�1;�1 A�1;0

A0;�1 A1 A0

A2 A1 A0

⋱ ⋱ ⋱

0BBB@
1CCCA; ð9Þ

where the transition blocks fA�1;�1;A�1;0;A0;�1;A0;A1;A2g are
given in Appendix A. We note that A�1;�1 and A1 describe transi-
tions within each level (i.e., transitions between states inΩn), A0;�1

and A2 for transitions from level n to level n�1, and A�1;0 and A0 for
transitions from level n to level nþ1. The transition blocks satisfy
equalities: A�1;�1eþA�1;0e¼ 0;A0;�1eþðA1þA0Þe¼ 0, and ðA2þ
A1þ A0Þe¼ 0, where e is a column vector of ones.

First, we find the stationary distribution of fðqwðtÞ; qsðtÞ;
qT ðtÞÞ; tZ0g. Let π¼ ðπ�1;π0;π1;…Þ be the stationary probability
distribution of fðqwðtÞ; qsðtÞ; qT ðtÞÞ; tZ0g, where πn includes all the
limiting probabilities of the states in level Ωn. Let A¼ A0þA1þA2.
Matrix A is an irreducible infinitesimal generator. Let θ satisfy θA
¼ 0 and θe¼ 1. Since the Markov chain of interest is irreducible
and has a QBD structure, by Neuts [19], the Markov chain is
ergodic if and only if

θA0eoθA2e; ð10Þ
which is guaranteed under λwþpλaocμ. If the ergodicity condi-
tion is satisfied, then π exists and it is the unique non-negative
solution for the linear system: πQ ¼ 0 and πe¼ 1. Since the infi-
nitesimal generator Q has a level independent QBD structure, a
matrix-geometric solution can be obtained for its stationary dis-
tribution:

πn ¼π0R
n; for nZ0 ð11Þ
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where R is called the rate matrix and is the minimal nonnegative
solution to nonlinear matrix equation:

A0þRA1þR2A2 ¼ 0; ð12Þ
and boundary probabilities (π�1;π0) can be obtained by solving
the linear system

ðπ�1;π0Þ
A�1;�1 A�1;0

A0;�1 A1þRA2

 !
¼ 0;

π�1eþπ0ðI�RÞ�1e¼ 1; ð13Þ
where I is the unit matrix.

Next, we use the matrix geometric solution fπ�1;π0;Rg to find
performance measures at the ED level. Performance measures to
be used in Section 5 are presented in this section. Some additional
performance measures are presented in Appendix B.

1. ED utilization: The maximum arrival rate to the ED node is λw
þpλa and the available capacity for those arrivals is cμ. As a
result, the ED utilization, ρ, can be defined as follows:

ρ¼ λwþpλa
cμ

ð14Þ

2. Loss probability of ambulance patients: Let ploss be the probability
that no ambulance is available when an ambulance patient
arrives (i.e., the probability that the ambulance patient is lost).
An ambulance patient is lost if every ambulance is either in
transit or waiting in the ED. Then we have

ploss ¼
Xc�1

i ¼ 0

ðπ�1Þði;NÞ þ
XNþ c

i ¼ c

ðπ0ðI�RÞ�1Þði;Nþ c� iÞ: ð15Þ

3. Distribution of the number of walk-in patients waiting in the
queue (related to qw(t)): Let qw be the number of walk-in
patients waiting in the queue in steady state. It is easy to see
that the distribution of qw is given by
fπ�1eþπ0e; πne; n¼ 1;2;…g. The mean number of walk-in
patients in the queue can be calculated by

E½qw� ¼
X1
n ¼ 0

nπne¼
X1
n ¼ 1

nπ0R
ne¼π0

X1
n ¼ 1

nRn

 !
e¼ π0RðI�RÞ�2e:

ð16Þ

4. Distribution for the number of ambulances in offload delay at the
ED: Recall that qs(t) is defined as the number of both ambulance
patients and walk-in patients in service and blocked. If qs(t) is
greater than c, then there are qsðtÞ�c ambulances blocked
outside the ED. Then qa ¼maxf0; qsðtÞ�cg is the number of
ambulances in offload delay, defined for the steady state, and its
probability distribution ξ¼ ðξð0Þ; ξð1Þ;…; ξðNÞÞ can be found as:

ξðmÞ ¼
Pj ¼ c

j ¼ 0 ηðjÞ; for m¼ 0

ηðmþcÞ; for m¼ 1;…;N

(
ð17Þ

where η(j) is defined in Appendix B. The mean queue number of
ambulances in offload delay can be found by
E½qa� ¼

PN
m ¼ 0 mξðmÞ.

5. Offload delay distribution: Offload delays (or waiting time) wa of
an ambulance patient arriving at an ED depends on the number
of ambulance patients at the ED and the number of walk-in
patients already in service which are captured in the state
variable qs(t). Note that ωðjÞ, which is defined in Appendix B, the
probability that j patients are waiting in the ED right after an
ambulance patient arrives to the ED, for j¼ 1;2;…;N. Since
there are c beds for all patients in the ED, each with an
exponential service time with parameter μ, if all beds are
occupied, the time to serve one patient has an exponential
distribution with parameter cμ. Thus, the total time to serve j
patients has an Erlang distribution of order j. Consequently,
when an ambulance patient arrives to the hospital ED, the
waiting time has a generalized Erlang distribution with a PH-
representation ðα; TaÞ of order N, where
α¼ ðωð1Þ;ωð2Þ;…;ωðNÞÞ, and

Ta ¼ cμ

�1
1 �1

⋱ ⋱
1 �1

0BBB@
1CCCA

N�N

: ð18Þ

The distribution function of the waiting time Wa is given by
PfWaotg ¼ 1�α expfTatge. The expected offload delays can be
found using the formula:

E½Wa� ¼
1
cμ

XN
j ¼ 1

jωðjÞ ð19Þ

Note here that Little's Law holds for the queueing model, i.e.,
E½qa� ¼ pλað1�plossÞE½Wa�, which can also be used to check the
accuracy of the results obtained.

6. Waiting time distribution for the walk-in patients: The waiting
time Ww of a walk-in patient arriving at an ED depends on the
number of ambulance patients in service and waiting outside
the ED. It also depends on the number of walk-in patients
already in service that is captured in the state variable qs(t).
Since walk-in patients have a lower priority than patients
arriving by ambulance, a walk-in patient cannot get admission
unless there is a bed available for him, i.e., qsðtÞoc. According to
Ozawa [24], the waiting time Ww of an arbitrary walk-in patient
has a phase-type distribution. By taking a different approach
from that in Ozawa [24], we find an explicit PH-representation
ðαw; TwÞ for Ww, where

αw ¼ϕðIÞðπ0ðI�RÞ�1Þ � e0;

Tw ¼Λ�1 I � ðA1þA0ÞþR0 � A2
� �

Λ; ð20Þ
where ϕðIÞ is the direct-sum of I (i.e., a row vector obtained by
stringing out all rows in I starting from the first row), e0 and R0

are the transposes of e and R, respectively, and Λ is a matrix
with elements of the vector ðπ0ðI�RÞ�1Þ � e0 on its diagonals
and all other elements are zero. A proof of (20) is given in
Appendix C.
The mean waiting time is given by E½Ww� ¼ �αwðTwÞ�1e.
According to Little's Law, we must have E½qw� ¼ λwE½Ww�, which
is useful for checking accuracy of computation. The sojourn time
of a walk-in patient is the sum of the its waiting time and its
service time. Since both the waiting time and the service time
are phase-type random variables and are independent, the
sojourn time of a walk-in patient has a phase-type distribution
as well. Details are omitted.
5. Numerical analysis of the EMS system

In Section 3, the ambulance offload delay is denoted as cWa for
the M½2�=M=c queue. In Section 4, the ambulance offload delay is
denoted as Wa for the One-ED system. In this section, the ambu-
lance offload delay from a simulation model is denoted as ~Wa. The
same convention is applied to other quantities of interest
fploss; qa; qw;Ww;Ww;k;Wa;kg. Due to Little's Law between the mean
queue length and mean waiting time, we shall present results for
the waiting times only. In Section 5.1, we validate the approx-
imations developed in Sections 3 and 4 through simulation. For
that purpose, we develop two examples; Example 5.1 represents a



Table 1
Approximations and simulation results for the first ED.

λa ~ploss bσ1 bρ1 E½Wa;1� E½cWa;1� E½ ~Wa;1� E½Ww;1� E½cWw;1� E½ ~Ww;1�

0.5 0.0001 0.0670 0.6920 0.1461 0.1444 0.1477 0.4790 0.4688 0.4808
1.0 0.0018 0.1340 0.7590 0.2125 0.2109 0.2158 0.9069 0.8752 0.9153
1.5 0.0093 0.2011 0.8261 0.2931 0.2983 0.3008 1.7616 1.7148 1.7915
2.0 0.0345 0.2681 0.8931 0.3855 0.4119 0.3954 3.7189 3.8523 3.7267

Table 2
Percent difference results for the first ED.

λa ΔE½cWa;1� (%) ΔE½ ~Wa;1� (%) ΔE½cWw;1� (%) ΔE½ ~Ww;1� (%)

0.5 �1.16 1.10 �2.13 0.38
1.0 �0.75 1.55 �3.50 0.93
1.5 1.77 2.63 �2.66 1.70
2.0 6.85 2.57 3.59 0.21

Table 3
The 95% confidence intervals for the mean waiting times for Example 5.1.

λa E½ ~Wa;1� (lower, upper) E½ ~Ww;1� (lower, upper)

0.5 0.1477 (0.1467, 0.1487) 0.4808 (0.4758, 0.4858)
1.0 0.2158 (0.2145, 0.2170) 0.9153 (0.9040, 0.9265)
1.5 0.3008 (0.2990, 0.3026) 1.7915 (1.7666, 1.8163)
2.0 0.3954 (0.3929, 0.3979) 3.7267 (3.6516, 3.8017)

Table 4
System parameters for Example 5.2.

k pk μT ;k λw;k ck μk

1 0.1 1.5 1 5 0.5
2 0.2 1.5 1.5 4 1
3 0.2 2 2.5 4 1
4 0.25 2 2 3 2
5 0.25 2 1.5 5 1
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network that consists of three hospitals. We focus on one hospital
and vary the ambulance patients' arrival rate to observe the
validity of the approximation with the increased utilization on the
network. Example 5.2 represents a network of five hospitals. In
Section 5.2, we use the approximations to conduct a case study for
a regional EMS system that serves three hospitals. In Section 5.3,
we extend the case study by performing some sensitivity analysis.

5.1. Model validation through simulation
Example 5.1. Assume that K¼3. We focus on the first ED (i.e.,
k¼1) and look at the mean waiting times of both ambulance
patients and walk-in patients obtained by the three methods: The
M½2�=M=c queue, the One-ED model, and simulation. Then we only
need parameters for the first ED: N¼5, p1 ¼ 1=3;μT ;1 ¼ 2;
λw ¼ 1:5; c1 ¼ 6, and μ1 ¼ 0:4. For λa ¼ 0:5;1;1:5;2, we compute the
loss probability, mean waiting times and other quantities and
present them in Table 1. In Table 2, we calculate the percent dif-
ference between approximation and simulation results versus
exact results. For example, ΔE½ ~Wa;1� ¼ E½ ~Wa;1 ��E½Wa;1 �

E½Wa;1� n100%.

Tables 1 and 2 demonstrate that

� When the ED utilization is low to medium, as represented by λa
between 0 and 1.5 patients per hour, then the approximation
results are within 5% of the exact results for both ambulance
and walk-in patients.

� When the ED utilization is high, as represented by λa from 1.5 to
2.0, the approximations are different from the exact results for
ambulance patients only. The main reason for this deviation is
due to the loss probability. However, walk-in patients results are
still within 5% of the exact results.

Thus, the two approximations can provide good estimates of
system performance measures if the loss probability of ambulance
patients is small. In addition, Table 1 shows clearly that:

� The two approximation approaches provide consistent esti-
mates of performance measures. Intuitively, it should be true as
long as the loss probability of ambulance patients, ploss, for the
One-ED model is not significant.

� When σ becomes large, the loss probability ~ploss becomes sig-
nificant. That leads to a significant difference between simula-
tion results and the two approximations. Based on our numer-
ical experiments, if the loss of ambulance patients is considered
properly in theM½2�=M=c queue, the approximation can be close
to simulation results. For the One-ED approximation, if the loss
of ambulance patients is transformed properly into the loss of
ambulances in the One-ED model, then the approximation can
be close to the simulation results. How to properly adjust the
number of available ambulances and how to adjust the ambu-
lance patient arrival rate are two interesting issues for future
research.

The simulation results with the 95% confidence intervals of the
meanwaiting times (with 50 replications) are presented in Table 3.

Example 5.2. Assume that K¼5, N¼10 and λa ¼ 6:5. Other system
parameters are given in Table 4. By simulation, we have
~ploss ¼ 0:0139. Other performance measures are presented in
Table 5.

Table 5 indicates that the approximation works well for a sys-
tem with bσ k as large as 0.3. The traffic intensity bρk can be as large
as 0.95. The 95% confidence intervals of the simulated mean
waiting times (with 50 replications) are shown in Table 6.

5.2. Optimization of the allocation of ambulance patients

In this subsection, we apply the framework developed in Sec-
tions 3 and 4 to analyze a case study that reflects an EMS system
that serves a region in southwestern Ontario, Canada. The EMS
system considered serves three local hospitals (i.e., K¼3). The
input parameters considered for this case study are obtained or
estimated by using available data.

� The number of ambulances available in the region is N¼17.
� The arrival rate of ambulance patients is λa ¼ 3 per hour.
� The arrival rates of walk-in patients ðλw;1; λw;2; λw;3Þ are given in

Table 7.
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� The ambulance transit rates are μT ;1 ¼ μT ;2 ¼ μT ;3 ¼ 2 per hour.
That is: the average transit time of ambulance patients to EDs is
half an hour.

� The number of servers at individual EDs (c1; c2; c3) are given in
Table 7. The number of servers at each ED reflects the number of
beds at the ED.

� The routing probabilities (p1; p2; p3) are given in Table 7. The
routing probability for each ED is calculated as the percentage of
Table 5
Approximation and simulation results for individual EDs.

k bσ k bρk E½Wa;k� E½cWa;k� E½ ~Wa;k� E½Ww;k� E½cWw;k� E½ ~Ww;k�

1 0.2600 0.6600 0.1713 0.1713 0.1628 0.5038 0.5038 0.4776
2 0.3250 0.7000 0.1587 0.1588 0.1510 0.5290 0.5292 0.4968
3 0.3250 0.9500 0.3301 0.3302 0.3292 6.6002 6.6031 5.8709
4 0.2708 0.6042 0.0823 0.0823 0.0795 0.2079 0.2079 0.2001
5 0.3250 0.6250 0.0794 0.0795 0.0746 0.2119 0.2119 0.1979

Table 6
The 95% confidence intervals for the mean waiting times for Example 5.2.

k E½ ~Wa;1� (lower, upper) E½ ~Ww;1� (lower, upper)

1 0.1628 (0.1608, 0.1648) 0.4776 (0.4691, 0.4862)
2 0.1510 (0.1497, 0.1523) 0.4968 (0.4904, 0.5032)
3 0.3292 (0.3177, 0.3207) 5.8709 (5.6550, 6.0869)
4 0.0795 (0.0791, 0.0799) 0.2001 (0.1985, 0.2017)
5 0.0746 (0.0740, 0.0752) 0.1979 (0.1958, 0.2001)

Table 7
Case study input parameters and performance measures results.

k λw;k (patient/hr) ck μk pk (%) bρk bσ k E½cWa;k� E½cWw;k�

1 4.2 35 1/6 45.00 0.9514 0.2314 0.1542 3.1738
2 3.5 30 1/6 29.00 0.8740 0.1740 0.0904 0.7178
3 3.2 29 1/6 26.00 0.8234 0.1614 0.0572 0.3242

Table 8
Case study optimization and approximation results.

k pn

k (%) bρk bσ k E½cWa;k� E½cWw;k� E½ ~Wa;k�(lower,
upper)

E½ ~Ww;k�(lower,
upper)

1 36.27 0.9065 0.1865 0.0985 1.0540 0.0986
(0.0975,
0.0997)

1.0468(1.0209,
1.0727)

2 30.78 0.8847 0.1847 0.1010 0.8761 0.1016(0.1006,
0.1025)

0.8845(0.8609,
0.9081)

3 32.95 0.8666 0.2045 0.0925 0.6936 0.0920
(0.0908,
0.0932)

0.6899(0.6695,
0.7103)

Table 9
Effect of ambulance patients' arrival rate on optimal decisions.

λa pn

1 (%) pn

2 (%) pn

3 (%) ρ1 (%) ρ2 (%)

1.0 35.40 28.29 36.31 78.07 75.66
1.5 35.79 29.49 34.72 81.20 78.85
2.0 36.01 30.12 33.87 84.35 82.05
2.5 36.16 30.51 33.33 87.50 85.26
3.0 36.27 30.78 32.95 90.65 88.47
3.5 36.36 30.98 32.66 93.82 91.69
4.0 36.44 31.14 31.13 96.98 94.91
patients who were transferred to that ED with respect to the
total number of patients who traveled by an ambulance for the
same period of time.

� The service rates at EDs (μ1;μ2;μ3) are given in Table 7. We use
the reciprocal of the Length Of Stay (LOS) of patients in each
hospital ED to find the average service rate.

We first calculate the estimated ED utilization and average
waiting times for both types of patients based on the current
routing probabilities. The results are shown in Table 7. Then, we
use our optimization problem in (7) to find the optimal routing
probabilities. We also compute the estimated ED utilization and
average waiting times for patients in individual EDs based on the
optimal routing decision and record the results in Table 8.

Based on the current routing probabilities (45%;29%;26%) the
total expected offload delays (i.e.,

P3
k ¼ 1 pkE½cWa;k�) are 0.1105 h.

While under the optimal routing probabilities ð36:27%;30:78%;

32:95%Þ the average expected offload delays are 0.0973 h. This
corresponds to a 11.9% decrease in the total offload delays
experienced by ambulances in the region. Although the main
purpose of the optimization problem is to mitigate the overall
offload delays experienced by EMS, we notice that the average
expected waiting time for walk-in patients (i.e.,P3

k ¼ 1 λw;kE½cWw;k�=ð
P3

n ¼ 1 λw;nÞ) has decreased significantly by
42.5% when the optimal routing decision is used.

Although the objective of this paper is to find proper allocation
of ambulance patients in the long run, two simulation studies are
carried out to compare the optimal policy with two other possible
policies: ED capacity contribution policy and a state-dependent
policy.

1. ED capacity contribution policy: In this policy, patients are routed
to EDs based on the ED capacity contribution to the regional
capacity. The routing probability is derived by setting

pk ¼
ckPK

k ¼ 1 ck
. When this policy is applied for the EMS system

defined in this case study, we get ðp1; p2;p3Þ ¼ ð0:3723;0:3191;
0:3085Þ. As a result, the mean waiting times of ambulance
patients are estimated by simulation as ðE½ ~Wa;1�; E½ ~Wa;2�, E½ ~Wa;3

�Þ ¼ ð0:0997;0:1095;0:0842Þ and the mean waiting times of
walk-in patients are ðE½ ~Ww;1�; E½ ~Ww;2�; E½ ~Ww;3�Þ ¼ ð1:0454;
1:1013;0:5637Þ. The average waiting time of an arbitrary patient
is 0.0981 for an ambulance patient, and 0.9146 for a walk-in
patient. Comparing those results to the optimal results recorded
in Table 8, we notice that the optimal routing policy slightly
outperforms the simple policy suggested here in terms of
ambulance patients waiting and walk-in patients waiting times.
We expect the superiority of our solution to increase as the gap
between the walk-in patients arrival rate to respective EDs
capacity increases. Consider for example a similar setting to the
case study above but with different walk-in patients arrival
rates, λw;k ¼ ð3:4;3:7;3:8Þ. Based on our model, the optimal
allocation policy is pn

k ¼ (0.5282, 0.2639, 0.2080). This results
ρ3 (%) σ1 (%) σ2 (%) σ3 (%) E½cWa� E½cWw�

73.72 6.07 5.66 7.51 0.0198 0.0842
76.98 9.20 8.85 10.77 0.0312 0.1524
80.22 12.35 12.05 14.01 0.0471 0.272
83.45 15.50 15.26 17.24 0.0688 0.4863
86.66 18.65 18.47 20.45 0.0973 0.8911
89.86 21.82 21.69 23.65 0.1342 1.7522
93.05 24.98 24.91 26.84 0.1807 4.2408
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in ðE½ ~Wa;1�; E½ ~Wa;2�; E½ ~Wa;3�Þ ¼ ð0:0657;0:1072;0:1190Þ. The aver-
age waiting time of an arbitrary patient is 0.0878 for an
ambulance patient. While based on the above ED capacity
contribution policy, which does not change when we change
the walk-in patients arrival rates, the estimated ambulance
patients waiting times are ðE½ ~Wa;1�; E½ ~Wa;2�; E½ ~Wa;3�Þ ¼ ð0:0176;
0:1429;0:2172Þ. This corresponds to an average waiting time of
an arbitrary patient equal to 0.1192. In both of the above
scenarios, the optimal allocation policy outperforms the ED
capacity contribution policy. In the first scenario, the percentage
of improvement was 0.82%. In the second scenario the improve-
ment was 26.34% on the total offload delays.

2. A state-dependent policy: The state-dependent policy is devel-
oped for the routing of ambulance patients: when an ambu-
lance patient arrives and there is an ambulance available, the
patient will be sent to the ED with the minimum number of
ambulances in the ED or in transit to the ED; if there is a tie,
then the ambulance patient is sent to the ED with the biggest
number of servers (i.e., the ED which has the highest service
capacity). When the state-dependent policy is applied to the
EMS system defined in the case study, the mean waiting times
of ambulance patients are estimated by simulation as
ðE½ ~Wa;1�; E½ ~Wa;2�; E½ ~Wa;3�Þ¼ð0:1533;0:0735;0:0242Þ and the
mean waiting times of walk-in patients are ðE½ ~Ww;1�; E½ ~Ww;2�;
E½ ~Ww;3�Þ ¼ ð2:9455;0:5130;0:1145Þ. Compared to the results
presented in Table 8, the mean waiting time at ED 1 is higher
for the system with the state-dependent policy. The percentages
of ambulance patients sent to EDs are ðp1; p2; p3Þ ¼ ð0:4715;
0:3283;0:2001Þ. Then the average waiting time of an arbitrary
ambulance patient can be obtained from ðp1; p2; p3Þ and ðE½ ~Wa;1�;
E½ ~Wa;2�; E½ ~Wa;3�Þ as 0.1019, which is greater then the estimated
average waiting time of an arbitrary customer under the optimal
routing probabilities ðpn

1; p
n

2; p
n

3Þ, which is 0.0963 (see Table 8).
Table 10
Simulation results for the case study.

λa E½ ~Wa �(lower, upper) E½ ~Ww �(upper, lower)

1.0 0.0197 (0.0190, 0.0204) 0.0835 (0.0793, 0.0876)
1.5 0.0315 (0.0307, 0.0327) 0.1535 (0.1468, 0.1602)
2.0 0.0464 (0.0451, 0.0476) 0.2647 (0.2511, 0.2782)
2.5 0.0694 (0.0676, 0.0712) 0.4915 (0.4646, 0.5184)
3.0 0.0962 (0.0944, 0.0979) 0.8641 (0.8147, 0.9135)
3.5 0.1352 (0.1326, 0.1378) 1.7626 (1.6634, 1.8618)
4.0 0.1802 (0.1790, 0.1813) 4.0501 (3.9070, 4.1931)

Fig. 3. Effect of ambulance patients' arriva
Another observation we have from this case study is related to
resource pooling. We observe that larger EDs should be loaded
more heavily than smaller EDs. For example, if we consider ED1
which has the largest capacity, we notice that it should be loaded
more heavily (highest utilization of 90.65%) because it has the
highest capacity in terms of the number of beds. Next, we perform
some sensitivity analysis on the results of the case study.
5.3. Sensitivity analysis

In this subsection, we increase the ambulance patients' arrival
rate gradually and observe its effect on the optimal routing deci-
sions ðpn

1; p
n

2; p
n

3Þ and total expected waiting time for both ambu-
lance patients and walk-in patients. We use the case study of
Section 5.2 as the base scenario. The results are reported in
Table 9, while the simulation results are shown in Table 10. From
these results we draw the following observations:

� As the high priority load increases on the EMS-ED network, as
represented by increased λa, the expected delays of patients
increase in all regional hospitals. However, walk-in patients
experience severe consequences of this increased load as we
can see from Fig. 3.

� As the ambulance patients arrival rate increases, we notice that
it is optimal to send a higher percentage of those arrivals to the
larger EDs (ED 1 and ED 2) and less to the smaller ED (ED 3) (see
Fig. 4). As λa increases, p2 and p1 increase, while p3 decreases.
l rate on total expected waiting times.

Fig. 4. Effect of ambulance patients' arrival rate on allocation probabilities
(p1 ;p2 ;p3).
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� As the load increases on the EMS-ED system, the deviation
between the approximation results and the simulation results
increases. While this is true for both arrival streams, we notice
that the model results for the ambulance patients are closer
than the walk-in patients results. This is because σk for k¼ 1;2
;3 is low (less than 30% for all EDs).
6. Conclusions

In summary, the optimization model in this paper is robust
under normal operating conditions as supported by the numerical
analysis. Our model results can be used to guide EMS dispatchers
on how to allocate patients to hospital EDs by using those allo-
cation probabilities as targets that they aim to achieve in the long
run when they make their dispatching decisions. However, it does
not limit their capability to deciding where to send the next
patient. In that sense, we see this model as a decision support tool.
It can also be used to evaluate the consequences between various
policy alternatives, e.g. comparing the effect of adding or
decreasing capacity in a hospital ED on the total offload delays
experienced by EMS. Or, the effect of a given allocation policy on
the total offload delays experienced in a region. It can also be used
to determine the capacity requirements needed to achieve certain
goals, e.g. how many beds are needed to decrease the offload
delays by 20% in the next year.

Another finding of this work is related to the effect of resource
pooling and work consolidation on offload delays. Larger EDs can
mitigate the effect of high utilization on both walk-in patients and
ambulance patients. However, the higher priority ambulance
patients benefit more from those larger EDs.

The decomposed model and the solution methodology devel-
oped in this paper perform well under normal operating condi-
tions (low EMS utilization). When we compare the optimization
model results with a state-dependent routing policy, the model
developed in this paper gave better results. In future research, we
are interested in developing an iterative scheme that can be used
to adjust the decomposed queueing model parameters when the
loss probability is high. The results can be useful in other appli-
cation areas such as telecommunication systems.
Appendix A

In this appendix, we present the blocks of the infinitesimal
generator Q defined in Section 4. First, we define three sets of
matrices used in the construction of the transition blocks in Q. For
i¼ 0;1;…;Nþc, let

ai ¼

0
1
2
⋮
N�ði�cÞþ �1
N�ði�cÞþ

0 1 2 … N�ði�cÞþ

n pλa
n pλa

n pλa
⋱ ⋱

n pλa
n

0BBBBBBBB@

1CCCCCCCCA
ðN�ði� cÞ þ Þ�ðN�ði� cÞ þ Þ

:

ð21Þ

where n is calculated such that the rows of the matrix Q sum to zero:
ðaiÞðj;jÞ ¼ �λw�minði; cÞμ�pλa� jμ0, for j¼ 0;1;…;N�ði�cÞþ �1,
and ðaiÞðN�ði� cÞ þ ;N�ði� cÞ þ Þ ¼ �λw�minði; cÞμ�ðN�ði�cÞþ Þμ0Þ. Let,
for i¼ 0;1;…; c�1,

bi ¼

0
1
2
⋮
N

0 1 2 … N

λw
μT λw

2μT λw
⋱ ⋱

NμT λw

0BBBBBB@

1CCCCCCA
N�N

;
ð22Þ

and, for i¼ c; cþ1;…;Nþc�1,

bi ¼

0
1
2
⋮
Nþc� i�1
Nþc� i

0 1 2 ⋯ N�ði�cÞ�1

0
μT 0

2μT 0
⋱ ⋱

ðN�ði�cÞ�1ÞμT 0
ðN�ði�cÞÞμT

0BBBBBBBBB@

1CCCCCCCCCA
ðNþ c� iÞ�ðNþ c� iÞ

;

ð23Þ

The third set of matrices are:

di ¼ iμINþ1�ði� cÞ þ ; for 1r irc

di ¼ cμ INþ1�ði� cÞ 0
� �

; for cþ1r irNþc: ð24Þ

The blocks A�1;�1;A�1;0, and A0;�1 for boundary transitions are
given as:

A�1;�1 ¼

0
1
⋮
c�2
c�1

0 1 2 … c�2 c�1
a0 b0
d1 a1 b1

⋱ ⋱ ⋱
dc�2 ac�2 bc�2

dc�1 ac�1

0BBBBBB@

1CCCCCCA;

A0;�1 ¼
c

cþ1
⋮
Nþc

0 … c�2 c�1
0 … 0 dc
0 … 0 0
⋮ ⋮ ⋮⋮
0 … 0 0

0BBB@
1CCCA;

A�1;0 ¼
0
⋮
c�2
c�1

c cþ1 … Nþc

0 0 … 0
⋮ ⋮ ⋮ ⋮
0 0 … 0
bc�1 0 … 0 0

0BBB@
1CCCA;

ð25Þ

The rate at which the number of walk-in patients increase is
defined in the matrix A0. We note that the queue size increases by
one only when the beds at the destination ED are full; otherwise it
does not change. Then A0 is

A0 ¼
c

cþ1
⋮
Nþc

c cþ1 … Nþc

λwINþ1

λwIN
⋱

λwI1

0BBBB@
1CCCCA;

ð26Þ

where In is the unit matrix of order n. Matrix A1 includes transi-
tions that do not affect the walk-in patients queue length; it
includes service completions of ambulances, service completions
of ambulance patients, and ambulance patients arrival to the EMS
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service. The details of A1 are given as follows:

A1 ¼

c

cþ1
⋮
Nþc�1
Nþc

c cþ1 … Nþc�1 Nþc

ac bc
dcþ1 acþ1 bcþ1

⋱ ⋱ ⋱
dcþN�1 acþN�1 bcþN�1

dcþN acþN

0BBBBBB@

1CCCCCCA
ð27Þ

The matrix A2 represents the rate at which the walk-in patients
queue decreases by one. Because those patients possess lower
priority than patients arriving by an ambulance, a walk-in patient
cannot be admitted unless there are no patients of the higher
priority waiting for a bed, or simply when q2ðtÞ4c. The details of
A2 are given as follows:

A2 ¼
c

cþ1
⋮
Nþc

c cþ1 … Nþc

cμINþ1

0
⋱

0

0BBB@
1CCCA:

ð28Þ
Appendix B

In this appendix, additional performance measures for the One-
ED model considered in Section 4 are presented.
1. Distribution of the sum of the number of patients in service and the

number of waiting ambulance patients qs(t): The distribution can
be obtained from the two vectors fπ�1;π0ðI�RÞ�1g. Let f
ηðiÞ;0r ircþNg be the distribution of qs(t). Then

ηðiÞ ¼

XN
j ¼ 0

ðπ�1Þði;jÞ; for i¼ 0;1;…; c�1;

XN
j ¼ 0

ðπ�1Þði;jÞ þ
XN

j ¼ 0:i� cþ jrN

ðπ0ðI�RÞ�1Þði;jÞ; for i¼ c; cþ1;…; cþN:

8>>>>>><>>>>>>:
ð29Þ

Note that ðπ�1Þði;jÞ is the component of vector π�1 that corre-
sponds to state ð�1; i; jÞ, and ðπ0ðI�RÞ�1Þði;jÞ is the component of
vector π0ðI�RÞ�1 that corresponds to states fðn; i; jÞ;n¼ 0;1;…g
AΩ.

2. Distribution of the number of ambulances in transit qT(t): Let γ ¼
ðγð0Þ; γð1Þ;…; γðNÞÞ be the distribution of the number of ambu-
lances in transit in steady state. Then we have, for
j¼ 0;1;2;…;N,

γðjÞ ¼
Xc�1

i ¼ 0

ðπ�1Þði;jÞ þ
XNþ c� j

i ¼ c

ðπ0ðI�RÞ�1Þði;jÞ: ð30Þ

3. Distribution of the number of waiting ambulances (or ambulance
patients) in the ED right after the arrival of an ambulance patient
to the ED: Let ω¼ ðωð0Þ;ωð1Þ;…;ωðNÞÞ be the distribution of
interest. First, we note that, right after an ambulance in transit
arrives to the ED, the number of waiting ambulances seen by
the ambulance is different from ξ. Also note that the arrival rate
of ambulances to the ED is jμT , given that qT ðtÞ ¼ j. By renewal
theory, we obtain

ωðiÞ ¼

1
ωall

Xc�1

i ¼ 0

XN
j ¼ 1

ðπ�1Þði;jÞjμT ; for i¼ 0;

1
ωall

XNþ1� i

j ¼ 1

ðπ0ðI�RÞ�1Þðiþ c�1;jÞjμT ; for i¼ 1;2;…;N;

8>>>>>><>>>>>>:
ð31Þ
where

ωall ¼
Xc�1

i ¼ 0

XN
j ¼ 0

ðπ�1Þði;jÞjμT þ
XN
i ¼ 1

XNþ1� i

j ¼ 0

ðπ0ðI�RÞ�1Þðiþ c�1;jÞjμT :

ð32Þ
Appendix C

We show (20) by finding the Laplace–Stieltjes transform (LST)
of Ww defined in Section 4. Note that walk-in patients arrive
according to a Poisson process. By the well-known PASTA (Poisson
arrival see time average), the distribution of the system at the
arrival epoch of an arbitrary walk-in patient is the same as that of
an arbitrary time, which is fπ�1;π0;π1;…g. By conditioning on the
system state at arrival, the LST of Ww can be derived as follows, for
s40,

E½e� sWw � ¼π�1eþ
X1
n ¼ 0

πn ðsI�A1�A0Þ�1A2

� �n
ðsI�A1�A0Þ�1A0;�1

e¼ π�1eþ
X1
n ¼ 0

π0R
n ðsI�A1�A0Þ�1A2

� �n
ðsI�A1�A0Þ�1A0;�1e

¼π�1eþϕ
X1
n ¼ 0

Rn ðsI�A1�A0Þ�1A2

� �n !
ðπ0

0

�ðsI�A1�A0Þ�1A0;�1eÞ ¼π�1eþϕðIÞ sI� I � ðA1þA0Þ�R0�
�A2Þ�1ðπ0

0 � A0;�1eÞ ¼ π�1eþϕðIÞΛ sI�Λ�1ðI � ðA1þA0Þ�R0
�

�A2ÞΛ
��1Λ�1ðπ0

0 � A0;�1eÞ ¼ π�1eþαwðsI�TwÞ�1Λ�1ðπ0
0

�A0;�1eÞ: ð33Þ
Then Ww has a phase-type distribution with PH-representation
ðαw; TwÞ if the followings properties can be verified:
� Tw is a PH-generator;
� π�1eþαwe¼ 1;
� TweþΛ�1ðπ0

0 � A0;�1eÞ ¼ 0.

The first property can be verified easily. The second is shown as:

π�1eþϕðIÞΛe¼ π�1eþϕðIÞððπ0ðI�RÞ�1Þ0 � eÞ
¼π�1eþπ0ðI�RÞ�1e¼ 1: ð34Þ

The third property can be proved as:

TweþΛ�1ðπ0
0 � A0;�1eÞ

¼Λ�1 ðπ0ðI�RÞ�1Þ0 � ðA1þA0Þeþðπ0ðI�RÞ�1RÞ0
�

�A2eþπ0
0 � A0;�1e

�
¼Λ�1 π0

0 � ð�A2eþA0;�1eÞ
� �¼ 0: ð35Þ

The last equality is due to A2e¼ �ðA1þA0Þe¼ A0;�1e.
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