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Abstract. In this paper, we present examples of a class of Markov chains that occur fre-
quently, but whose associated matrices are a challenge to construct efficiently. These are
Markov chains that arise as a result of several identical Markov chains running in paral-
lel. Specifically for the cases considered, both the infinitesimal generator matrix for the
continuous case, and more so the transition probability matrix for the discrete equiva-
lent, are complex to construct effectively and efficiently. We summarize the algorithms for
constructing the associated matrices and present examples of applications, ranging from
special queueing problems to reliability issues and order statistics. MATLAB subroutines
are provided in an online supplement for the implementation of the algorithms.
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1. Introduction
Markov chains have been an indispensable tool in the
analysis of many stochastic systems, such as queue-
ing models and reliability models. While the theory
on Markov chains has matured and has found broad
applications, there are still some very important issues
that are overlooked. The construction of the transition
probabilitymatrix or the infinitesimal generatormatrix
for independent identical Markov chains in parallel is
one of them. On the one hand, the issue is well-known
for years due to many applications. On the other hand,
it is challenging to actually do the construction for
even the moderate size of problems. Since the Markov
chains being combined are independent and identi-
cal, researchers simply use the Kronecker product form
and of course end up with a Markov chain with a huge
state space; hence leading to a dimensionality problem.
This approach leads to what we call TPFS (track-phase-
for-server).
With the increasing computing power gained in the

past decades, it turns out that one well-known ap-
proach, which we call CSFP (count-server-for-phase),
for the problem leads to Markov chains that are man-
ageable computationally. This idea is based on count-
ing the number of Markov chains that are in each state,
rather than keeping track of the state each Markov
chain is as in the case of TPFS. However, constructing
the CSFP Markov chain is a bit more challenging and
has thus not received much attention from researchers.

Thus we feel the need to put together a paper to sum-
marize the algorithms developed for the approach.

Some examples of the types of problems we are
focusing on are as follows. Consider the following:

1. A MAP/PH/K queueing system in which all the
servers are identical: If theMAP is of dimension ma and
the PH-distribution is of dimension ms , it is straight-
forward to study the queueing system by utilizing the
phase of each server using the TPFS approach. How-
ever, that could lead to a huge state space of up to
ma mK

s states for the interior blocks of the resulting
Markov chain. If we choose to use the CSFP approach,
constructing the resulting Markov chain could be com-
plex, but then the resulting state space will be not
larger than ma(K + ms − 1)!/(K! (ms − 1)!), which is sig-
nificantly smaller than ma mK

s . This is a huge difference
in the state space required, especially as ms and K
increase. We note that similar queueingmodels such as
the MAP/PH/K/K queue have the same issue that can
be addressed in the same way.

2. A queueing system in which arrivals are from
N identical sources, each generating traffic according
to a MAP with dimension ma : Suppose the resulting
traffic is multiplexed (superimposed) to feed into a
multiserver queueing system with K identical servers
with PH service time distribution of dimension ms .
Again, we can use the TPFS to construct the result-
ing Markov chain, which would result in a huge state
space; or we can use the CSFP that will result in amuch
smaller state space but more complex to construct.
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3. A reliability problem in which we are studying
the behavior of K identical components: Let us assume
that the life of each component follows a PH distri-
bution with dimension ms . The study of the resulting
Markov chain is the same as the idea in the first exam-
ple given earlier.
4. The order statistics in which K independent iden-

tical PH random variables are of interest; let them be
of order ms : The resulting order statistics are PH distri-
butions that can also be studied as the case in the first
example.
These are just some examples in which this type of

problem occurs, i.e., that of constructing a resulting
Markov chain of a combination of several independent
ones. The common thread with all these examples is
that they are a result of several identical and indepen-
dent Markov chains that are running in parallel. We
will elaborate further on these examples later in the
paper.

Meanwhile we present a brief summary of the
state space explosion associated with the first exam-
ple. Consider the case where ma � 1 and ms � 2; we
show in Table 1 how the state space increases with K.
Example 1 (He and Alfa 2015). If ms � 2, the numbers
of states of the two Markov Chains to be constructed
by using the TPFS and CSFP approaches are given in
Table 1.
With this type of fast growth in the state space for

the TPFS approach, the idea of developing an efficient
algorithm for constructing the CSFP Markov chain
becomes important.

Focusing mainly on algorithms for the CSFP ap-
proach, we separate the continuous time case from
the discrete time case, since the latter is significantly
more challenging due to the occurrence of simultane-
ous events. We introduce basic algorithms and subrou-
tines for the case with independent identical Markov
chains in parallel. The construction process involved
only matrix operations without any preprocessing of
the state space. We then apply the basic subroutines to
queueingmodels, superposition ofMarkov arrival pro-
cesses, and order statistics. In addition, we add some
simple state space complexity analysis and time com-
plexity analysis.We also collect a few simple properties
that can be used in debugging programs.

The remainder of the paper is organized as follows.
In Section 2, we briefly review the existing literature.
Algorithms for the continuous time case are summa-
rized in Section 3, and the discrete time case is taken
care of in Section 4. Section 5 concludes the paper.

Table 1. Comparison of the Numbers of States for TPFS and CSFP

K 2 4 6 8 10 15 20 30
TPFS 4 16 64 256 1,024 32,768 1,048,576 1,073,741,824
CSFP 3 5 7 9 11 16 21 31

2. Literature Review
We consider aMarkov chain that consists of K indepen-
dent identical Markov chains running in parallel. The
problem of interest is to construct the infinitesimal gen-
erator (i.e., Q-matrix) or transition probability matrix
(i.e., P-matrix) of the Markov chain. The straightfor-
ward approach TPFS can and has been used for that
purpose. Unfortunately, the state space of the resulting
Markov chain is so large that it becomes useless for real
applications. Meanwhile, the CSFP approach has been
known and used. The correspondingMarkov chain has
a significantly smaller state space. However, the con-
struction of the transition blocks is challenging for the
CSFP approach, especially for the discrete time case.
Yet the use of CSFP depends largely on constructing
the Q-matrix or P-matrix efficiently.
It is somehow surprising to see that the first for-

mal algorithm on the problem is only dated back to
Ramaswami (1985), even though the problem has been
known long before that. Ramaswami (1985) introduced
subroutines for the continuous time case. An algorithm
for the discrete time case was introduced only recently
in He andAlfa (2015). For the continuous case, He et al.
(2017) developed an algorithm that is essentially equiv-
alent to Ramaswami (1985).

Although the literature on CSFP is limited, appli-
cations of the Markov chain consisting of indepen-
dent identical Markov chains running in parallel are
enormous. For example, the distributions of the order
statistics of independent identically distributed phase-
type random variables can be constructed by using
the CSFP approach, which is addressed in detail in
Bladt and Nielsen (2017). However, the construction
of the matrices for CSFP depends on that of TPFS
through a transformation matrix that has to be con-
structed manually. The study of queueing systems
with multiple identical servers is closely related to the
CSFP approach. See examples in (i) Ramaswami and
Lucantoni (1985), Asmussen and O’Cinneide (1998),
Asmussen and Möller (2001), and Breuer et al. (2002)
for some standard queueing models with multiple
servers; (ii) Wagner (1997) for queues with multiple
servers and service priority; (iii) Kim et al. (2012) for
queues with multiple servers and retrials; and (iv) He
et al. (2017) for queues withmultiple servers and impa-
tient customers. Finally, the idea of modeling commu-
nication traffic resulting from several sources multi-
plexed has been dealt with by different researchers in
different ways, but mostly by approximations because
of the huge Markov chains that could result. An
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example of such problems was discussed by Thomp-
son et al. (2001) and in several references therein. Most
researchers at best resorted to using two-dimensional
Markov chains as approximations for each source to
avoid the dimensionality explosion that could result
after multiplexing.
In the rest of this paper, we summarize a few basic

algorithms introduced in Ramaswami (1985), He et al.
(2017), and He and Alfa (2015). In addition, we use
the basic algorithms to construct Markov chains asso-
ciated with the MAP/PH/K queue (He and Alfa 2015),
the superposition of independent identical Markovian
arrival processes, and order statistics of phase-type dis-
tributions. We also add some simple analysis on state
space and time complexity.

3. Continuous Time Markov Chains
The algorithm to be introduced in this section was
first introduced in Ramaswami (1985). The version pre-
sented in this section is from He et al. (2017), which
is essentially equivalent to that in Ramaswami (1985).
An advantage of the construction process in He et al.
(2017) is that it is self-proving. In this section, the basic
algorithm is introduced in Section 3.1 and three appli-
cations are presented in Sections 3.2–3.4.

3.1. Independent Identical Continuous Time
Markov Chains in Parallel

We consider K independent identical continuous time
Markov chains (CTMCs), denoted as {Xk(t), t ≥ 0},
for k � 1, 2, . . . ,K. Assume that these Markov chains
have ms states and the same Q-matrix S. Putting the K
Markov chains together, we obtain a newMarkov chain
{(X1(t), . . . ,XK(t)), t ≥ 0}. It is easy to see that the new
Markov chain has mK

s states and Q-matrix

Q(TPFS)(1,...,K) � S ⊕ S ⊕ · · · ⊕ S, (1)

where ⊕ is for the Kronecker sum of matrices. The
Markov chain is formulated by the TPFS approach. The
state space of the Markov chain becomes too large even
for moderate K and ms (see Table 1). Thus, the other
well-known approach CSFP is usually used.
Define N j(t) the number of the K original CTMCs

in phase j at time t. Then it is easy to see that
{(N1(t), . . . ,Nms

(t)), t ≥ 0} is also a CTMC. This new
Markov chain contains the same information as the
other one, if it is unnecessary to distinguish the K orig-
inal Markov chains.

Proposition 3.1. Random variables {N1(t), . . . ,Nms
(t)}

satisfy N1(t) + · · · + Nms
(t) � K, for t ≥ 0. The num-

ber of states of CTMC {(N1(t), . . . ,Nms
(t)), t ≥ 0} is

(K + ms − 1)!/(K! (ms − 1)!).
Next, we introduce an algorithm for the construction

of the Q-matrix for {(N1(t), . . . ,Nms
(t)), t ≥ 0}. The idea

is to divide the Q-matrix into smaller blocks and build
those smaller blocks, which can be realized by decom-
posing the state space of the CTMC. Specifically, we
decompose the state space according to Nms

(t), which
takes values {0, 1, . . . ,K}. Since the original Markov
chains are continuous in time, it is easy to see thatNms

(t)
can increase or decrease at most by one at each transi-
tion. This leads to a quasi birth-and-death (QBD) struc-
ture in theQ-matrix of {(N1(t), . . . ,Nms−1(t),Nms

(t)), t ≥
0}, where the level variable Nms

(t) records the number
of Markov chains in phase ms and the phase variable
(N1(t), . . . ,Nms−1(t)) records the numbers of Markov
chains in phases {1, 2, . . . ,ms − 1} at time t. Define, for
1 ≤ k ≤ K and 1 ≤ m ≤ ms ,

Ω(k ,m)�
{
(n1 , . . . , nm): ni ≥ 0, i �1, 2, . . . ,m ,

m∑
i�1

ni � k
}
.

(2)
The state space of {(N1(t), . . . ,Nms

(t)), t ≥ 0} is
Ω(K,ms), which can be decomposed as

Ω(K,ms)�(Ω(K,ms −1)× {0})
∪ (Ω(K−1,ms −1)× {1})
∪ · · · ∪ (Ω(0,ms −1)× {K}). (3)

Based on the decomposition of the state space, transi-
tions of the Markov chain can be classified as follows.

1. In-coming transitions from ms to {1, 2, . . . ,ms − 1}:
Nms
(t) is decreased by one;

2. Transitions within {1, 2, . . . ,ms − 1}: Nms
(t)

remains the same;
3. Out-going transitions from {1, 2, . . . ,ms −1} to ms :

Nms
(t) is increased by one.

Based on the above decomposition and classification,
the Q-matrix of {(N1(t), . . . ,Nms

(t)), t ≥ 0} can be writ-
ten as Equation (4) in Figure 1 where u� S[ms , 1:ms−1]
and v � S[1:ms − 1, ms]. It is clear from Equation (4) in
Figure 1 that, to obtain Q(K,ms), we need to construct
three sets of matrices:

(i) {Q+

u (k ,ms − 1), k � 0, 1, . . . ,K − 1}: The transition
blocks for in-coming transitions;

(ii) {Q−v (k ,ms − 1), k � 1, . . . ,K}: The transition
blocks for out-going transitions;

(iii) {Q(k ,ms − 1), k � 0, 1, . . . ,K}: The transition
blocks for transitions within {1, 2, . . . ,ms − 1}.

Next, three subroutines are developed for that pur-
pose.

Subroutine QPlus( ): Construction of Q+

u (k ,m) with
given k, m, and row vector u, which is for the tran-
sition rates that the number of processes in phases
{1, 2, . . . ,m} increases by one (i.e., in-coming transi-
tions). Similar to Equation (4), by decomposing the
state set Ω(k ,m) according to the value of Nm(t), we
obtain Equation (5) in Figure 2 where (i) Q+

u (0,m) �
u[1:m], m � 1, 2, . . . ,ms , and (ii) Q+

u (k , 1) � u1 , k �

0, 1, . . . ,K − 1. It is clear from (5) in Figure 2 that, to
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Figure 1. Matrix Q(k ,ms)

Q(K,ms)�

©­­­­­­­­­«

Ω(K,ms − 1) × {0} Ω(K − 1,ms − 1) × {1} · · · Ω(1,ms − 1) × {K − 1} Ω(0,ms − 1) × {K} ª®®®®®®®®®¬

Ω(K,ms − 1) × {0} Q(K,ms − 1) Q−v (K,ms − 1)
Ω(K − 1,ms − 1) × {1} Q+

u (K − 1,ms − 1) Q(K − 1,ms − 1) Q−v (K − 1,ms − 1)
...

. . .
. . .

. . .

Ω(1,ms − 1) × {K − 1} (K − 1)Q+

u (1,ms − 1) Q(1,ms − 1) Q−v (1,ms − 1)
Ω(0,ms − 1) × {K} KQ+

u (0,ms − 1) Q(0,ms − 1)

+

©­­­­­­­­«

Ω(K,ms − 1) × {0} Ω(K − 1,ms − 1) × {1} · · · Ω(1,ms − 1) × {K − 1} Ω(0,ms − 1) × {K} ª®®®®®®®®¬

Ω(K,ms − 1) × {0} 0× I
Ω(K − 1,ms − 1) × {1} S(ms ,ms)I

...
. . .

Ω(1,ms − 1) × {K − 1} (K − 1)S(ms ,ms)I
Ω(0,ms − 1) × {K} KS(ms ,ms)

(4)

Figure 2. Matrix Q+

u (k ,m)

Q+

u (k ,m)�

Ω(k + 1,m − 1) × {0} Ω(k ,m − 1) × {1} · · · Ω(1,m − 1) × {k} Ω(0,m − 1) × {k + 1}

Ω(k ,m − 1) × {0} ©­­­­­­«

Q+

u (k ,m − 1) um I ª®®®®®®¬
Ω(k − 1,m − 1) × {1} Q+

u (k − 1,m − 1) um I
...

. . .
. . .

. . .

Ω(1,m − 1) × {k − 1} Q+

u (1,m − 1) um I
Ω(0,m − 1) × {k} Q+

u (0,m − 1) um

(5)

Figure 3. Matrix Q−v (k ,m)

Q−v (k ,m)�

Ω(k − 1,m − 1) × {0} Ω(k − 2,m − 1) × {1} · · · Ω(1,m − 1) × {k − 2} Ω(0,m − 1) × {k − 1}

Ω(k ,m − 1) × {0} ©­­­­­­­­­­«

Q−v (k ,m − 1) ª®®®®®®®®®®¬

Ω(k − 1,m − 1) × {1} vm I Q−v (k − 1,m − 1)
...

. . .
. . .

...
. . .

. . .

Ω(1,m − 1) × {k − 1} (k − 1)vm I Q−v (1,m − 1)
Ω(0,m − 1) × {k} kvm

(6)

obtain Q+

u (k ,m), we need to first find similar matri-
ces with smaller k and/or m. A recursive proce-
dure follows from the observation immediately, which
leads to subroutine QPlus( ) for Q+

u (k ,m). MATLAB-
codes for QPlus( ) are given in Table A.1 in the online
supplement.
Subroutine QMinus( ): Construction of Q−v (k ,m) for

given k, m, and column vector v, which is for the tran-
sition rates that the number of processes in phases
{1, 2, . . . ,m} decreases by one (i.e., out-going transi-
tions). Similar to Q+

u (k ,m), Q−v (k ,m) can be written
as (6) in Figure 3 where (i) Q−v (1,m) � v[1:m], m �

1, 2, . . . ,ms , and (ii) Q−v (k , 1)� kv1, k � 1, . . . ,K. Subrou-
tine QMinus( ) for Q−v (k ,m) is based on the structure of
the matrix given in Equation (6) in Figure 3. MATLAB-
codes for QMinus( ) are given in Table A.2 in the online
supplement.
Subroutine Qkm( ): ConstructionofQ(k ,m)withgiven

k, m, and matrix S[1:m , 1:m]. We note that Q(0,m) �
0 and Q(k , 1) � kS(1, 1). The subroutine Qkm( ) for

Q(k ,m) is based on the structure of the matrix given
in Equation (4) (Note: use {k ,m , S[1:m , 1:m]} to replace
{K,ms , S} in Equation (4).) Similar to Q+

u (k ,m) and
Q−v (k ,m), to find Q(k ,m), we need to construct all such
matriceswith smaller k and m. As shown in (4), subrou-
tines QPlus( ) and QMinus( ) are to be called in Qkm( ).
MatLab-codes for Qkm( ) are given in Table A.3 in the
online supplement.

Finally, we call Qkm( ) with {K,ms , S} to obtain
Q(K,ms) for {(N1(t), . . . ,Nms

(t)), t ≥ 0}.
Subroutine SPhi( ): Assume that the original CTMCs

are ergodic with stationary distribution θ � (θ1 , θ2 ,
. . . , θms

), i.e., θS � 0 and θe � 1. Since the K original
CTMCs are independent and parallel, the stationary
distributionφ of {(N1(t), . . . ,Nms

(t)), t ≥ 0} has amulti-
nomial distribution:

φ(n)� K!
n1! . . . nms

!

ms∏
j�1
θ

n j

j ,

for n� (n1 , . . . , nms
) ∈Ω(K,ms). (7)
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A simple procedure can be developed for computingφ.
MATLAB-codes for SPhi( ) are given in Table A.4 in the
online supplement.
Verification. The following relationships are use-

ful for debugging subroutines and for checking the
correctness of the algorithm: (i) Q(K,ms)e � 0; and
(ii) φQ(K,ms)� 0 and φe� 1.

3.2. Continuous Time MAP/PH/K Queue
The queueing model has K identical servers and a sin-
gle queue. The customer arrival process and service
time are defined explicitly as follows.

• Arrivals: Continuous time Markovian arrival pro-
cess (D0 ,D1), where D0 and D1, are square matrices of
order ma . Intuitively, D0 contains the transition rates
without an arrival and D1 contains the transition rates
with one arrival. The stationary distribution θa of the
underlying Markov chain of the arrival process satis-
fies θa(D0 + D1) � 0 and θae � 1. (See Neuts 1979 for
more detail.)

• Service: Continuous time phase-type distribution
with PH-representation (β, S) of order ms . Intuitively,
β is the initial distribution of the underlying CTMC
of the phase-type distribution, and S is the subgener-
ator of transitions between nonabsorbing phases. The
stationary distribution θs of the underlying CTMC sat-
isfies θs(S + S0β) � 0 and θse � 1. (See Neuts 1981 for
more detail.)
Define q(t) the queue length at time t. We introduce

twoCTMCs that can be used to analyze q(t). Let Ia(t) be
the phase of the underlyingMarkov chain of theMarko-
vian arrival process, Is , k(t) the phase of the underly-
ing Markov chain associated with the service time of
the k-th server (which is working), at time t. It is easy
to see that {(q(t), Ia(t), Is , 1(t), . . . , Is ,min{q(t),K}(t)), t ≥ 0}
is a CTMC. This is called the TPFS approach since the
process is defined by Tracking the Phase For the underly-
ing Markov chain of individual Servers. This CTMC is of
the QBD-type, for which q(t) is the level variable and
(Ia(t), Is ,1(t), . . . , Is ,min{q(t),K}(t)) the phase variable of the
QBD process.
Let N j(t) be the number of servers whose service

phase is j at time t. That {N1(t), . . . ,Nms
(t)} are similar

to that in Section 3.1, except that N1(t) + · · · + Nms
(t)

is the total number of servers in service at time t and
it takes values {0, 1, . . . ,K}. It is also easy to see that
{(q(t), Ia(t),N1(t), . . . ,Nms

(t)), t ≥ 0} is a CTMC. This is
called the CSFP approach since it Counts the numbers
of Servers For individual Phases. This CTMC is also of
the QBD-type, for which q(t) is the level variable and
(Ia(t),N1(t), . . . ,Nms

(t)) the phase variable.
For both the TPFS and CSFP approaches, the

Q-matrix of the associated CTMC has the QBD

structure and can be rewritten as follows:

Q �

©­­­­­­­­­­­­­«

A0, 0 A0, 1

A1, 0 A1, 1 A1, 2

. . .
. . .

. . .

AK−1,K−2 AK−1,K−1 AK−1,K

AK,K−1 A1 A0

A2 A1 A0

. . .
. . .

. . .

ª®®®®®®®®®®®®®¬
.

(8)
For the CSFP approach, the transition blocks can be
obtained as follows:

A0, 0 � D0 , A0, 1 � D1 ⊗ P+(0,ms);
Ak , k−1 � I ⊗Q−(k ,ms), Ak , k � D0 ⊕Q(k ,ms),

Ak , k+1 � D1 ⊗ P+(k ,ms);
A2 � I ⊗ (Q−(K,ms)P+(K − 1,ms)),
A1 � D0 ⊕Q(K,ms), A0 � D1 ⊗ I ,

(9)

where ⊗ is for the Kronecker product of matri-
ces, P+(k ,ms) can be constructed by calling QPlus( )
with {k ,ms ,β}; Q−(k ,ms) by calling QMinus( ) with
{k ,ms ,S0}; and Q(k ,ms) by calling Qkm( ) with
{k ,ms , S}. Intuitively, matrix P+(k ,ms) is for the phase
change after the arrival of a customer and Q−(k ,ms) is
for the phase change after a service completion.
For the TPFS approach, the order of transition blocks
{A0 ,A1 ,A2} is ma mK

s . For the CSFP approach, the order
of {A0 ,A1 ,A2} is ma(K + ms − 1)!/(K! (ms − 1)!). Conse-
quently, the levels of the QBD process corresponding
to CSFP is much smaller than that of TPFS.
Verification. The following property can be useful for

debugging and checking correctness of subroutines.
Proposition 3.2. Let A � A0 + A1 + A2. Then θa ⊗ φ is
the stationary distribution of A, where φ can be obtained
by calling SPhi( ) with {K,ms ,θs}. In addition, we have
(θa ⊗ φ)A0e � θaD1e, the arrival rate, and (θa ⊗ φ)A2e �

KθsS0, the maximum service rate.

3.3. Superposition of Continuous Time Markovian
Arrival Processes

We consider K independent identical continuous time
MAPs {{(Wk(t), Ik(t)), t > 0}, k � 1, 2, . . . ,K} with com-
monmatrix-representation (D0 ,D1) of order ma , where
Wk(t) is the number of arrivals in [0, t] and Ik(t)
is the phase of the underlying CTMC at time t of
the k-th MAP. Define W(t) � W1(t) + · · · + WK(t).
It is easy to see that {(W(t), I1(t), . . . , IK(t)), t > 0}
is a MAP with matrix-representation (C0 ,C1) of
order mK

a , where C0 � D0 ⊕ · · · ⊕ D0 and C1 �

D1 ⊕ · · · ⊕D1. Following the CSFP approach, it is
easy to see that {(W(t),N1(t), . . . ,Nms

(t)), t > 0} is
a MAP with matrix-representation (C0 ,C1) of order
(K + ma − 1)/(K! (ma − 1)!), where C0 can be obtained by
calling Qkm( ) with {K,ma ,D0} and C1 can be obtained
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by calling Qkm( ) with {K,ma ,D1}. The correctness of
(C0 ,C1) can be verified by computing and comparing
the average arrival rates of the MAPs.

3.4. Order Statistics of Continuous Phase-Type
Random Variables

Consider K independent identical phase-type random
variables {X1 , . . . ,XK} with a common PH-represen-
tation (ms ,β, S) and S0

�−Se. Denote by {X(1) , . . . ,X(K)}
the order statistics of {X1 , . . . ,XK} with X(K) �
min{X1 , . . . ,XK} and X(1) �max{X1 , . . . ,XK}. It is well-
known that the order statistics are also phase-type dis-
tributions (Neuts 1981).
Define Ik(t) the phase of the underlying CTMC asso-

ciated with Xk , k � 1, 2, . . . ,K. The state space of Ik(t)
is {1, . . . ,ms ,ms + 1}. Define q(t) � ∑K

k�1 1{Ik (t)<ms+1}.
Then q(t) is decreasing, each time by one. It is easy to
see that {(q(t), I1(t), . . . , IK(t)), t ≥ 0} is a CTMC (the
TPFS approach) and the number of states of theMarkov
chain is 1 + ms + m2

s + · · · + mK
s . It is also readily seen

that {(q(t),N1(t), . . . ,Nms
(t)), t ≥ 0} is a CTMC (the

CSFP approach) with ∑K
k�1 (k + ms − 1)!/(k! (ms − 1)!)

states. Both processes are of the pure death-type with
Q-matrix of the form:

0

1

...

K − 1

K

©­­­­­­­«

Q0, 0

Q1, 0 Q1, 1

. . .
. . .

QK−1,K−2 QK−1,K−1

QK,K−1 QK,K

ª®®®®®®®¬
, (10)

where Q0, 0 � 0.
For the TPFS approach, we have Qk , k � S⊕ S⊕ · · · ⊕ S

and Qk , k−1 �
∑k

j�1 I j−1 ⊗S0 ⊗ Ik− j , where In is the identity
matrix of order mn

s . For the CSFP approach, Qk , k is
obtained by calling Qkm( ) with {k ,ms , S} and Qk , k−1 is
obtained by calling QMinus( ) with {k ,ms ,S0}.

The relationship between q(t) and {X(1) , . . . ,X(K)} is

X(k) �min{t: q(t)� k − 1}, for k � 1, 2, . . . ,K. (11)

Based on the above relationship and the definition
of phase-type distribution, the PH-representations of
{X(1) , . . . ,X(K)} can be obtained as
(a) X(K): (α(K),T(K)), where α(K) � SPhi(K,ms ,β)

and T(K)� QK,K ;
(b) X(k): (α(k),T(k)), where α(k)� (0,α(k + 1)); and

P(K,ms)�

. . . Ω(q ,ms − 1) × {K − q} . . .

...

Ω( j,ms − 1) × {K − j}
...

©­­­­«
... . . .

...

. . . Pu , v(Ω( j,ms − 1) × {K − j}: Ω(q ,ms − 1) × {K − q}) . . .

... . . .
...

ª®®®®¬
, (12)

T(k)�
©­­«

Qk , k 0(
Qk+1, k

0

)
T(k + 1)

ª®®¬ ,
for k � K − 1,K − 2, . . . , 1.

The number of phases of the PH-representation
(α(k),T(k)) is ∑K

j�k( j + ms − 1)!/( j! (ms − 1)!), for k �

1, . . . ,K.

4. Discrete Time Markov Chains
The discrete time case is significantly more complex
than its continuous counterpart. The reason is that
transitions of individual Markov chains can occur
simultaneously for the discrete case. To handle this
issue, we decompose each transition of the constructed
Markov chain into transitions of individual original
Markov chains. This section is organized similarly to
Section 3.

4.1. Independent Identical Discrete Time Markov
Chains in Parallel

We consider K independent identical discrete time
Markov chains (DTMC), denoted as {Xk(t), t � 0, 1,
2, . . .}, for k � 1, 2, . . . ,K. Assume that these Markov
chains have ms states and the same P-matrix S. Putting
the K Markov chains together, we obtain a newMarkov
chain {(X1(t), . . . ,XK(t)), t � 0, 1, 2, . . .}. It is easy to see
that the newMarkov chain has mK

s states and P-matrix
P(TPFS)(1,...,K) � S ⊗ S ⊗ · · · ⊗ S.
Define N j(t) the number of DTMCs in phase j at

time t. Then it is easy to see that {(N1(t), . . . ,Nms
(t)), t �

0, 1, 2, . . .} is also a DTMC. This Markov chain con-
tains the same information as {(X1(t), . . . ,XK(t)), t �

0, 1, 2, . . .}, if it is unnecessary to distinguish the K
original Markov chains. The state space of the Markov
chain is Ω(K,ms). Define, for q � 0, 1, . . . ,K, and m �

1, . . . ,ms ,
• P(q ,m)�P(Ω(q ,m):Ω(q ,m)): The one-step transi-

tion matrix from the set Ω(q ,m) to Ω(q ,m), given that
the transitions within the m phases are governed by
S[1:m , 1:m].
For P(q ,m), only phase changes within phases
{1, 2, . . . ,m} are considered. Apparently, we have
P(0,m)� 1; P(1,m)� S[1:m , 1:m]; and P(k , 1)� sk

1, 1.
Our target is P(K,ms). Repeating the idea to decom-

pose the state space Ω(K,ms) according to the value
of Nms

(t) (see Equation (3)), matrix P(K,ms) can be
decomposed into sub-blocks:
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where u � S[ms , 1:ms − 1], v � S[1:ms − 1,ms],
Pu , v(Ω( j,ms − 1) × {K − j}:Ω(q ,ms − 1) × {K − q}) is the
one-step transition block from Ω( j,ms − 1) × {K − j} to
Ω(q ,ms − 1) × {K − q}. To find those transition blocks,
similar to the continuous time case, we classify tran-
sitions into three types based on Nms

(t): (i) out-going
transitions from phases {1, 2, . . . ,ms − 1} to phase ms ,
(ii) transitions within {1, 2, . . . ,ms − 1}, and (iii) in-
coming from ms to {1, 2, . . . ,ms −1}. Different from the
continuous time case, all K Markov chains can change
their phase at the same time.
In general, P(k ,m) is the transition matrix within

Ω(k ,m) and has the same decomposition as shown
in Equation (). That is, we can decompose the state
set Ω(k ,m) and obtain Pu , v(·, ·) for a process consists
of k independent processes with m phases. For each
transition, some original Markov chains enter {1, 2, . . . ,
m − 1}, and some leave the set to {m}. To find transition
block Pu , v(·, ·), we need to know the exact number of
out-going/in-coming transitions. For example, given a
transition from Ω( j,m − 1) × {k − j} to Ω(q ,m − 1) ×
{k − q}, if j > q, the out-going and in-coming transitions
can be: j− q (out-going) and 0 (in-coming); j− q+1 and
1; . . ., and min{ j, k − q} and min{q , k − j}. Thus, if the
number of out-going transitions is given, the number
of in-coming transitions is known as well. Define

• Pu , v(q , j,m−1 | k)�Pu , v(Ω(q ,m−1):Ω( j,m−1) | k):
The one-step transition matrix from the set Ω(q ,m − 1)
to Ω( j,m − 1), given that there are exactly k out-going
transitions, and the transitions within the m−1 phases
are governed by S[1:m − 1, 1:m − 1], the in-coming tran-
sitions are determined by probabilities in vector u, and
out-going transitions are determined by probabilities
in vector v.
Now, the transitions from Ω( j,m − 1) × {k − j} to

Ω(q ,m − 1) × {k − q} can be categorized according to
the number of out-going transitions, which is between
max{0, j − q} and min{ j, k − q}. If the out-going tran-
sition number is l, then there are exactly l + q − j orig-
inal Markov chains going from phase m into phases
{1, 2, . . . ,m − 1}. Thus, out of the k − j Markov chains
in phase m, exactly k− q− l of them remain in phase m.
Note that the probability of a Markov chain to remain
in phase m is sm ,m . The corresponding probability is( k− j

k−q−l

)
(sm ,m)k−q−l . Conditioning on the number of out-

going transitions, we obtain

PS[m ,1:m−1],S[1:m−1,m]
(
Ω( j,m−1)×{k− j}: Ω(q ,m−1)×{k−q}

)
�

min{ j,k−q}∑
l�max{0, j−q}

PS[m ,1:m−1],S[1:m−1,m]( j,q ,m−1 | l)

·
(

k− j
k−q− l

)
(sm ,m)k−q−l . (13)

Next, we decompose the transition with exactly k
out-going transitions into: (1) k out-going transitions
to m; (2) transitions withinΩ(q ,m − 1); and (3) j − q + k
in-coming transitions. Define

• L−v (q + j, q ,m−1)� L−v (Ω(q + j,m−1):Ω(q ,m−1)):
The one-step transition matrix from the set Ω(q + j,
m − 1) toΩ(q ,m−1) only due to j out-going transitions
(i.e., leaving {1, 2, . . . ,m − 1}), given that out-going
transitions are determined by probabilities in column
vector v. (Note that no other type of phase change is
considered.)

• L+

u (q , q + j,m−1)� L+

u (Ω(q ,m−1):Ω(q + j,m−1)):
The one-step transition matrix from the set Ω(q ,m − 1)
to Ω(q + j,m − 1) only due to j in-coming transi-
tions (i.e., going into {1, 2, . . . ,m − 1}), given that in-
coming transitions are determined by probabilities in
row vector u.

Although the three types of transitions occur simul-
taneously, we consider them in the following order:
out-going, within the current set, and in-coming. Then
we handle them separately to obtain

Pu , v(q , q ,m − 1 | 0)� P(q ,m − 1), for q � 1, 2, . . . ,K;
Pu , v(q , j,m − 1 | k)
� L−v (q , q − k ,m − 1)P(q − k ,m − 1)L+

u (q − k , j,m − 1),
for k ≤ q ≤ k + j. (14)

For the first equation in Equation (14), there is no
out-going transition (and no in-coming transition).
All transitions are internal between phases {1, 2, . . . ,
m − 1}. Thus, vectors {u,v} are not useful and the tran-
sition matrix should be P(q ,m − 1). For the second
equation in Equation (14), we first consider the k out-
going transitions from {1, 2, . . . ,m − 1} to an outside
phase according to v, which are recorded in L−v (q , q − k ,
m − 1); then all the transitions of the remaining q − k
Markov chains within phases {1, 2, . . . ,m − 1}, which
are recorded in P(q− k ,m−1); and j−(q− k) in-coming
transitions from an outside phase into {1, 2, . . . ,m − 1}
according to u, which is recorded in L+

u (q − k , j,m − 1).
Further, for the k out-going transitions and the j −
(q − k) in-coming transitions, we decompose them
into a sequence of single out-going or in-coming
transitions:

L−v (q + k , q ,m − 1) � 1
k!

q+1∏
j�q+k

L−v ( j, j − 1,m − 1),
for k , q ≥ 0;

L+

u (q , q + k ,m − 1) �
q+k−1∏

j�q
L+

u ( j, j + 1,m − 1),
for k , q ≥ 0.

(15)

Now, we have reached at L−v ( j, j − 1,m) and L+

u ( j,
j + 1,m) (Note: for convenience, we reset m − 1 to m),
in which only one out-going/in-coming transition
is involved. Similar to Q−v (k ,m) and Q+

u (k ,m) in
Section 3.1, simple recursive relationships exist for
L−v ( j, j − 1,m) and L+

u ( j, j + 1,m), which lead to recur-
sive methods to compute those matrices. Using the
above relationships, three subroutines are developed
for computing P(K,ms).
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Subroutine PPlus( ): For given {k ,m ,u}, we find
L+

u{k , k + 1,m}. The subroutine is based on the follow-
ing equation:

L+

u (k , k+1,m)

�

©­­­­­­­­­­«

Ω(k+1,m−1)×{0} · · · Ω(0,m−1)×{k+1} ª®®®®®®®®®®¬
,

Ω(k ,m−1)×{0} L+

u (k , k+1,m−1) um I

Ω(k−1,m−1)×{1}
. . . um I

...
. . .

. . .

Ω(1,m−1)×{k−1}
. . . um I

Ω(0,m−1)×{k} L+

u (0,1,m−1) um

(16)

where um is the probability that a Markov chain
enters phase m from {m + 1, . . . ,ms}, and L+

u (0, 1,m) �
u[1:m] , L+

u (k , k + 1, 1) � u1. MATLAB-codes for PPlus( )
are given in Table A.5 in the online supplement.
Subroutine PMinus( ): For given {k ,m ,v}, we find

L−v (k + 1, k , m), which is based on the following:

L−v (k , k − 1,m)

�

©­­­­­­­­­­­­­­­­«

Ω(k − 1,m − 1) × {0} . . . Ω(0,m − 1) × {k − 1} ª®®®®®®®®®®®®®®®®¬

,

Ω(k ,m − 1) × {0} L−v (k , k − 1,m − 1)

Ω(k − 1,m − 1) × {1} vm I
. . .

.

.

.
. . .

. . .

.

.

.
. . .

. . .

Ω(1,m − 1) × {k − 1} (k − 1)vm I L−v (1, 0,m − 1)
Ω(0,m − 1) × {k} kvm

(17)

where vm is the probability that a Markov chain leaves
phase m into {m + 1, . . . ,ms}, and L−v (1, 0,m) � v[1:m],
L−v (k + 1, k , 1)� (k + 1)v1. MATLAB-codes for PMinus( )
are given in Table A.6 in the online supplement.
Subroutine Pkm( ): For given {k ,m}, we find P(k ,m)

based on Equations () to (15) and (sub) P-matrix
S[1:m , 1:m]. MATLAB-codes for Pkm( ) are given in
Table A.7 in the online supplement. We note that
P(K,ms) can be generated by calling Pkm( ) with
{K,ms , S}.
Verification. Similar to the continuous time case, the

stationary distribution of P(K,ms) can be constructed
from that of S by calling SPhi( ), which can be used to
check the correctness of P(K,ms).

4.2. Discrete Time MAP/PH/K Queue
The queueing model has K identical servers and a sin-
gle queue. The customer arrival process and service
time are defined explicitly as follows.

• Arrivals: Discrete time Markovian arrival process
(D0 ,D1), where D0 and D1 are square matrices of
order ma . The stationary distribution of the underlying
Markov chain θa satisfies θa(D0 +D1)�θa and θae� 1.

• Service: Discrete time phase-type distribution
with PH-representation (β, S) of order ms . The station-
ary distribution of the underlyingMarkov chain θs sat-
isfies θs(S +S0β)�θs and θse� 1.
Define q(t) be the queue length at time t, Ia(t) the

phase of the underlying Markov chain of the Marko-
vian arrival process, Is , k(t) the phase of the underly-
ing Markov chain associated with the service time of
the k-th server (which is working), at time t. It is easy
to see that {(q(t), Ia(t), Is , 1(t), . . . , Is ,min{q(t),K}(t)), t �

0, 1, 2, . . .} is a DTMC. It is also easy to see
that {(q(t), Ia(t),N1(t), . . . ,Nms

(t)), t � 0, 1, 2, . . .} is a
DTMC. For both the TPFS and CSFP approaches, the
P-matrix of the associatedDTMC is of theGI/M/1-type
and can be written as follows:

P �

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

A0, 0 A0, 1

A1, 0 A1, 1 A1, 2

.

.

.
. . .

. . .
. . .

AK−1, 0 . . . AK−1,K−2 AK−1,K−1 AK−1,K

AK, 0 AK, 1 . . . AK,K−1 AK,K A0

AK+1, 1 AK+1, 2

. . . AK+1,K A1 A0

. . .
. . .

. . .
. . .

. . .
. . .

A2K−1,K−1 A2K−1,K

. . . A2 A1 A0

A2K,K AK . . . A2 A1 A0

AK+1 AK . . . A2 A1 A0

. . .
. . .

. . .
. . .

. . .
. . .

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

.

(18)

For the CSFP approach, the transition blocks can be
obtained as follows:

(1) Ak , k+1 � D1 ⊗ Pβ,S0(k , k + 1,ms | 0), for k ≤ K − 1;
(2) A0 � Ak , k+1 � D1 ⊗ Pβ,S0(K,K,ms | 0), for k ≥ K;
(3) Ak , 0 � D0 ⊗ Pβ,S0(k , 0,ms | k), for k ≤ K;
(4) Ak , k−K � D0 ⊗ Pβ,S0(K, k −K,ms |K),

for K + 1 ≤ k ≤ 2K − 1;
(5) AK+1 � Ak , k−K � D0 ⊗ Pβ,S0(K,K,ms |K), for k ≥ 2K.
(6) Ak , j � D0 ⊗ Pβ,S0(k , j,ms | k − j)

+D1 ⊗ Pβ,S0(k , j,ms | k − j + 1),
for k ≤ K, 1 ≤ j ≤ k;

(7) Ak , j � D0 ⊗ Pβ,S0(K,min{ j,K},ms | k − j)
+D1 ⊗ Pβ,S0(K,min{ j,K},ms | k − j + 1),

for K + 1 ≤ k ≤ 2K − 1, k −K + 1 ≤ j ≤ k;
(8) Ak− j+1 � Ak , j � D0 ⊗ Pβ,S0(K,K,ms | k − j)

+D1 ⊗ Pβ,S0(K,K,ms | k − j + 1),
for 2K ≤ k , k −K + 1 ≤ j ≤ k , (19)

and Pβ,S0(k , j,ms | l) is obtained as in Equation (14)
by calling subroutine Pkm( ), PPlus( ), and PMinus( ).
See Table A.8 in the online supplement for MATLAB-
codes.
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Proposition 4.1. Let A�A0+A1+ · · ·+AK+1. Thenθa ⊗φ
is the stationary distribution of A, where φ can be obtained
by calling SPhi( ) with {K,ms ,θs}.

4.3. Superposition of Discrete Time Markovian
Arrival Processes

We consider K independent identical discrete time
MAPs {{(Wk(t), Ik(t)), t > 0}, k � 1, 2, . . . ,K} with com-
mon matrix-representation (D0 ,D1) of order ma .
Define W(t) � W1(t) + · · · + WK(t). It is well-
known that {(W(t), I1(t), . . . , IK(t)), t > 0} is a batch
Markovian arrival process with matrix-representation
(C0 ,C1 , . . . ,CK) of order mK

a , where C0 � CK, 0 ,C1 �

CK, 1 , . . . ,CK � CK,K , and

C0, 0 � 1, Ck , 0 � Ck−1, 0 ⊗D0 , for k � 1, 2, . . . ,K;
Ck , j � Ck−1, j ⊗D0 +Ck−1, j−1 ⊗D1 ,

for k � 1, 2, . . . ,K, j � 1, 2, . . . , k − 1;
Ck , k � Ck−1, k−1 ⊗D1 , for k � 1, 2, . . . ,K. (20)

Following the CSFP approach, it is easy to see
that {(W(t),N1(t), . . . ,Nms

(t)), t > 0} is a MAP
with matrix-representation (C0 ,C1 , . . . ,CK) of order
(K + ma − 1)!/(K! (ma − 1)!). However, it is not straight-
forward to construct {C0 ,C1 , . . . ,CK} from {D0 ,D1}
by using the subroutines developed in Section 4.1.
The reason is that transitions of different (original)
underlying Markov chains can come from D0 or
D1, which is hard to distinguish. Let P0(k ,ma) be
generated by calling Pkm( ) with {k ,ms � ma , S � D0}
and P1(k ,ma) be generated by calling Pkm( ) with
{k ,ms � ma , S � D1}. Then P0(k ,ma) contains the
transition probabilities from Ω(k ,ma) to Ω(k, ma)
without arrivals for k MAPs, and P1(k, ma) contains
the transition probabilities from Ω(k ,ma) to Ω(k ,ma)
with k arrivals for k MAPs. It is then clear that
C0 � P0(K,ma) and CK � P1(K,ma). It is also clear that
P0(K − k ,ma) ⊗ P1(k ,ma) contains all the probabilities
that there are exactly k arrivals from K MAPs, which
is defined on state space Ω(K − k ,ma) ×Ω(k ,ma). We
call state (x1 , x2) in Ω(K − k ,ma) × Ω(k ,ma) equivalent
to state x in Ω(K,ma) if x1 + x2 � x. It is readily seen
that any state in Ω(K − k ,ma) ×Ω(k ,ma) is equivalent
(uniquely) to a state inΩ(K,ma). Let Γ be the matrix for
the mapping from Ω(K − k ,ma) ×Ω(k ,ma) to Ω(K,ma)
between equivalent states, i.e., Γ((x1 , x2), x) � 1, if
(x1 , x2) and x are equivalent; 0, otherwise. Then
Ck can be obtained by normalizing each row of
Γ′(P0(K−k ,ma)⊗P1(k ,ma))Γ to one, for k �0, 1, 2, . . . ,K.
Note that Γ′ is the transpose of Γ. We would like to
point out that the implementation of the scheme is
significantly compromised by the order of matrix Γ,
which can be too big for practical use.
For the PH-renewal processwith phase-type renewal

times with PH-representation {ma ,α,T}, for which
D0 �T, D1 �T0α, and T0

� (I−T)e, {C0 ,C1 , . . . ,CK} can

be constructed in a straightforward manner. In fact, we
have C0 � P(K,ma) generated using Equation () with
S � T, and Ck � Pα,T0(K,K,ma | k), for k � 1, 2, . . . ,K,
which is defined in Equation (14) with m � ma + 1
and S[1:m − 1, 1:m − 1] � T, can be obtained by calling
subroutines Pkm( ), PPlus( ), and PMinus( ). The idea
behind the method is that an external phase, i.e., phase
ma +1, can be introduced for out-going transitions that
correspond to all the arrivals.

4.4. Order Statistics of Discrete Phase-Type
Random Variables

Consider K independent identical discrete phase-type
random variables {X1 , . . . ,XK} with a common PH-
representation (ms ,β, S) (see Neuts 1981) and S0

�

e− Se. Denote by {X(1) , . . . ,X(K)} the order statistics of
{X1 , . . . ,XK} with X(K) � min{X1 , . . . ,XK} and X(1) �
max{X1 , . . . ,XK}. It is well-known that the order statis-
tics are also discrete phase-type distributions.

Define Ik(t) the phase of the underlying DTMC asso-
ciated with Xk , k � 1, 2, . . . ,K. The state space of Ik(t) is
{1, . . . ,ms ,ms + 1}. Similar to the continuous case, we
define q(t) � ∑K

k�1 1{Ik (t)<ms+1}. Then q(t) is decreasing.
It is easy to see that {(q(t), I1(t), . . . , IK(t)), t � 0, 1, . . .}
is a DTMC (the TPFS approach) and the number of
states of this Markov chain is 1 + ms + m2

s + · · · + mK
s .

It is also readily seen that {(q(t),N1(t), . . . ,Nms
(t)),

t ≥ 0} is a DTMC (the CSFP approach) with ∑K
k�1(k +

ms − 1)!/(k! (ms − 1)!) states. Both processes are of the
pure death-type with P-matrix:

P(K,ms)

�

0

1
...

K − 1

K

©­­­­­­­«

P0, 0

P1, 0 P1, 1

...
. . .

. . .

PK−1, 0 . . . PK−1,K−2 PK−1,K−1

PK, 0 · · · · · · PK,K−1 PK,K

ª®®®®®®®¬
.

(21)

For the TPFS approach, we have

P0, 0 � 1, Pk , 0 � Pk−1, 0 ⊗ S0 , for k � 1, 2, . . . ;
Pk , j � Pk−1, j ⊗ S0

+Pk−1, j−1 ⊗ S,
for k � 1, 2, . . . , j � 1, 2, . . . , k − 1;

Pk , k � Pk−1, k−1 ⊗ S, for k � 1, 2, . . . . (22)

For the CSFP approach, Pk , k can be obtained by call-
ing Pkm( ) with {k ,ms , S}, and Pk , j can be obtained as
follows:

Pk , j � L−S0(k , j,ms)P( j,ms)/(k − j)!, for k > j. (23)

which can be constructed by calling PMinus( ) and
Pkm( ) with {k ,ms , S,S0}. See Table A.9 for MATLAB-
codes.
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The relationship between q(t) and {X(1) , . . . ,X(K)} is

X(k) �min{t: q(t) ≤ k − 1}, for k � 1, 2, . . . ,K. (24)

Based on the above relationship and the definition
of phase-type distribution, the PH-representations of
{X(1) , . . . ,X(K)} can be obtained as
(c) X(K): (α(K), T(K)), where α(K) � SPhi(K,ms ,β)

and T(K)� PK,K ;
(d) X(k): (α(k), T(k)), where α(k)� (0,α(k + 1)) and

T(k)�
©­­­­«

Pk , k 0©­­«
Pk+1, k
...

PK, k

ª®®¬ T(k + 1)

ª®®®®¬
, for k � K − 1,K − 2, . . . , 1.

5. Conclusion
This paper demonstrates that by using the CSFP, many
Markov chains that are otherwise deemed too huge to
handle for practical purposes can now be considered
feasible for real-life problems. The space complexity
of Markov chains can be significantly reduced, but the
construction of the Markov chains is quite involved.
The subroutines provided in this paper now make
it possible to construct and compute them efficiently,
making the required tools very accessible.
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