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Abstract This paper is concerned with an M/PH/K queue with customer abandon-
ment, constant impatient time, andmany servers. By combining the method developed
in Choi et al. (Math Oper Res 29:309–325, 2004) and Kim and Kim (Perform Eval
83–84:1–15, 2015) and the state space reduction method introduced in Ramaswami
(Stoch Models 1:393–417, 1985), the paper develops an efficient algorithm for com-
puting performance measures for the queueing system of interest. The paper shows a
number of properties associated with matrices used in the development of the algo-
rithm, which make it possible for the algorithm, under certain conditions, to handle
systems with up to one hundred servers. The paper also obtains analytical properties
of performance measures that are useful in gaining insight into the queueing system
of interest.
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1 Introduction

Due to customer impatience, system congestion control, or other factors, customer
abandonment canbe seen inmanyqueueing systems. For somecases (e.g., supermarket
checkout systems), the impact of customer abandonment on the system is negligible.
For other cases (e.g., call centers), the impact can be significant. For the call center
case, ignoring customer abandonment may lead to over or under staffing and hence
huge financial loss (seeMandelbaum and Zeltyn 2013). Thus, the study of queues with
customer abandonment or queues with impatient customers has attracted the attention
of both researchers and practitioners for decades.

The study of queues with customer abandonment traces back to as early as 1950’s.
Early works include Barrer (1957a, b), Finch (1960), Daley (1965), Gnedenko and
Kovalenko (1968), and Jurkevic (1970, 1971), in which the M/M/c type abandonment
queues are investigated. Extensions to M/G/1 and GI/M/1 type abandonment queues
are carried out in later years (e.g., Baccelli et al. 1984; Kok and Tijms 1985; Stanford
1990;Boots andTijms 1999;Xiong et al. 2008).While someof existingworks consider
models with random impatient times, others considermodels with a constant impatient
time (e.g., Daley 1965; Boots and Tijms 1999). More recently, customer impatience
is considered in queueing models with variable arrival rate, multi-types of customers,
and service priority (e.g., Movaghar 1998; Brandt and Brandt 1999a, b; Choi et al.
2001, and van Houdt 2012). Approximation methods have been utilized in analyzing
abandonment queueing systemswith a large number of servers (e.g., Brandt andBrandt
2002; Garnett et al. 2002; Dai and Tezcan 2008; Dai and He 2010, 2011; Dai et al.
2010).

While classical queueing analysis focuses on analytic results or approximation
results, recent works explore algorithmic methods for computing performance mea-
sures. In Choi et al. (2004), an MAP/M/K queue with constant impatient time is
investigated. In Kim and Kim (2015), an M/PH/1 queue with constant impatience
time and variable service rate is investigated. To take the advantage of matrix-analytic
methods, both papers develop computational methods for computing performance
measures related to customer waiting time and queue length.

This paper combines the solution approach developed in Choi et al. (2004) and Kim
andKim (2015) and the state space reductionmethod developed in Ramaswami (1985)
to investigate the M/PH/K queue with constant impatient time, Markov modulated
service rate, and many servers. Compared to Choi et al. (2004), this paper considers a
model with a more general service time distribution through an environment process
for service. Compared to Kim and Kim (2015), this paper considers a model with
multiple servers. Similar to Kim and Kim (2015), a Markov process associated with
the age of the head-of-queue customer is introduced (also see He 2005). Using the
Markov process, the paper obtains performance measures related to waiting time
and queue length. To deal with the state space dimensionality issue, this paper uses
an approach developed in Ramaswami (1985) (also see Ramaswami and Lucantoni
1985; Asmussen and O’Cinneide 1998) to reduce the state space so that the algorithm
developed in this paper can handle systems with up to one hundred servers. A number
of properties associated with matrices used in the algorithm are proved.
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An M/PH/K queue with constant impatient time 141

Kawanishi and Takine (2016) also investigated the M/PH/K queue with constant
impatience time. Their analysis is based on approach introduced in Choi et al. (2004)
as well. An algorithm for performance analysis, which is similar to ours, is developed
in that paper. Compared toKawanishi andTakine (2016), our paper: (i) provides details
on the construction of the associatedMarkov process using the space reductionmethod
introduced in Ramaswami (1985), (ii) finds some quantities explicitly, and (iii) shows
a number of properties ofmatrices involved in computation. Consequently, the compu-
tational procedure developed in our paper is more convenient to use and more efficient
numerically. Since typical applications of queues with customer abandonment are in
the design and/or analysis of call centers and telecommunications systems that have
many servers, this paper increases the applicability of the theory developed in Choi
et al. (2004), Kim and Kim (2015), and Kawanishi and Takine (2016) significantly.

For queues with customer abandonment and a large number of servers, diffusion
approximation works well for performance analysis (see Dai and He 2011). If the
system has only one server, exact results are obtained formany such queueing systems.
The method developed in this paper works efficiently for the abandonment queue with
many servers, and the analysis is exact. Thus, the results in this paper fill the gap in
the existing literature.

Markov modulated fluid queue (MMFQ) has been proven to be an effective tool
in analyzing queueing models (e.g., see Dzial et al. (2005); Houdt (2012), and Meini
2013). The basic idea of the approach is to introduce a Markov modulated fluid flow
process associated with the workload process of the queueing system of interest. If
the stationary distribution of the fluid flow process can be found, then some queueing
quantities can be obtained. In the literature, the MMFQ method has been used in
analyzing single-server queues successfully. For our M/P H/K queue with constant
impatient time, however, the associated state space can become too large with the
increase of the number of servers (as shown in Sect. 2) for numerical computation. In
this case, the MMFQmethod would encounter the same dimensionality issue with the
approach taken in this paper. Thus, the advantage of MMFQ is not immediately clear
in the study of the M/P H/K queue with constant impatient time. In this paper, we
choose to follow the lead by Choi et al. (2004) and Kim and Kim (2015), and leave
the MMFQ approach for future research.

Themain contributions of this paper include: (i) combining two existing approaches
to develop computational procedures for computing distributions and moments of any
order of waiting times and queue lengths for queueing systems with multiple servers;
and (ii) showing properties to improve the efficiency of algorithms, which make it
possible to analyze queues with a large number of servers, and to gain insight into the
queueing system of interest.

The rest of the paper is organized as follows. In Sect. 2, we introduce the queueing
model of interest and a Markov process associated with the age of the customer at the
head of the queue. The stationary distribution of the Markov process is obtained in
Sect. 3. Some technical details for theMarkov process and its stationary distribution are
collected in Sect. 4 and “Appendixes A and B”. In Sect. 5, computational procedures
are developed for two auxiliary matrices. A number of performance measures are
obtained in Sect. 6. In Sect. 7, we present a few numerical examples and discuss some
computational issues when the number of servers is big. Section 8 concludes the paper.
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2 Queueing model and Markov process associated with customer age

Weconsider amulti-server queueingmodelwith impatient customers. Upon arrival, all
customers join a single queue and are served on a first-come-first-served basis. There
are K identical servers. The service rate of servers changes according to a Markov
process. When the waiting time of a customer reaches constant time τ , the customer
leaves the systemwithout service. The queueingmodel is defined explicitly as follows.

(i) Customers arrive according to a Poisson process with parameter λ.
(ii) All customers join a single queue waiting for service and are served on a first-

come-first-served basis. If a customer’s waiting time reaches constant time τ ,
the customer leaves the system immediately without service.

(iii) There are K identical servers. When a server becomes available, the customer at
the head of the queue (if there is any) enters the server for service. If an arriving
customer finds an idle server, the customer enters the server for service upon
arrival.

(iv) The workload associated with each customer has a phase-type distribution with
PH-representation (β, T ) of order ms . We assume that βe = 1, i.e., the workload
of a customer is always positive. Let T0 = −T e, where e is the column vector
of ones. We assume that T +T0β is irreducible, i.e., the PH-representation (β,
T ) is PH-irreducible. Let ϕ = (ϕ1, ϕ2, . . ., ϕms ) be the row vector satisfying
ϕ(T + T0β) = 0 and ϕe = 1. Note that 0 is a vector of zeros. Since the PH-
representation is irreducible, ϕ is the unique solution to the linear system. Note
that ϕ is the stationary distribution of the underlying Markov chain associated
with the PH-renewal process whose interarrival times have PH-distribution
(β, T ). The mean workload is given by −βT−1e. It is well-known that ϕT0 =
1/( −βT−1e). See Neuts (1981) for more about phase-type distributions.

(v) The service rate of servers is modulated by a continuous timeMarkov chainwith
infinitesimal generator Q and me states (to be called the environment process).
We assume that the process is irreducible. Let π be the stationary distribution
of Q. Then π is the unique solution to linear system πQ = 0 and πe = 1.

(vi) The service rate in state j of the environment process is μ j , for j = 1, 2, …,
me. Thus, if the state of the environment process changes, the service rate may
change in the middle of a service. Let M be an me × me matrix with {μ j , j = 1,
2, …, me} on its diagonal and all other elements zero. Let μ = πMe, which is
the mean service rate.

(vii) Define ρ = λβ(−T −1)e/(Kμ), which can be considered to be the offered load
to the system.

To obtain performance measures for the queueing model, we utilize a Markov
process associated with the age of the customer at the head of the queue. We introduce
theMarkovprocess in this section anddevelop computationalmethods for performance
measures in Sects. 3, 4, 5, and 6.

The age of a customer is defined as the time elapsed since the customer enters
the system. Since customers arrive according to a Poisson process, tracking the age
of the customer in the head of the queue and the service processes of individual
servers, together with information on the environment, provides enough information
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An M/PH/K queue with constant impatient time 143

to describe the dynamics of the queueing system. Consequently, system performance
can be analyzed. Define

• a(t): the age of the first customer waiting in the queue at time t, if the (waiting)
queue is not empty; otherwise, a(t) = −∞.

• Ie(t): the state of the environment process at time t.
• ni (t): the number of servers whose service phase is i at time t, for i = 1, 2, …, ms .

It is easy to see that {(a(t), Ie(t), n1(t), . . ., nms (t)), t ≥ 0} is a continuous time
Markov process. Based on the total number of working servers, the state space of
(n1(t), . . ., nms (t)) can be organized as Ω(0) ∪ Ω(1) ∪ . . . ∪ Ω(K ), where, for k = 0,
1, 2, …, K,

Ω(k) =
{

(n1, . . . , nms ) : ni ≥ 0, ni integer, i = 1, . . . , ms,

ms∑
i=1

ni = k

}
. (1)

The set Ω(k) consists of all states such that there are exactly k customers in service
(or k working servers), for k = 0, 1, …, K. The number of states in Ω(k) is given by
(k + ms − 1)!/(k!(ms − 1)!). Then the state space of the Markov process can be given
as {

{−∞} × {1, . . . , me} × {∪K
k=0Ω(k)}

}
∪ {[0, τ ) × {1, . . . , me} × Ω(K )} . (2)

Note Instead of using {n1(t), . . . , nms (t)}, a more straightforward and simple way to
model the service process is to keep track of the workload process for each server.
However, the number of states required by that approach to track the service status of
the K servers is mK

s , which is significantly greater than that of the current approach.
To analyze the Markov process, we need to identify the transitions between states

explicitly. For that purpose, we first construct the transitions within Ω(0) ∪ Ω(1) ∪
. . . ∪ Ω(K ). Note that the number of customers in service can change at most one
when the system state changes. Thus, the matrix for transition rates within Ω(0) ∪
Ω(1) ∪ . . . ∪ Ω(K ) can be written as

Ω(0) Ω(1) · · · Ω(K−1) Ω(K )

−λI +

Ω(0)

Ω(1)
...

Ω(K−1)

Ω(K )

⎛
⎜⎜⎜⎜⎜⎝

S(0,ms ) S+(0,ms )

S−(1,ms ) S(1,ms ) S+(1,ms )

. . .
. . .

. . .

S−(K−1,ms ) S(K−1,ms ) S+(K−1,ms )

S−(K ,ms ) S(K ,ms )

⎞
⎟⎟⎟⎟⎟⎠

, (3)

where I is the identity matrix (whose order depends on the context) and the three sets
of transition blocks {S+(k, ms), k = 0, 1, …, K − 1}, {S−(k, ms), k = 1, 2, …, K},
and {S(k, ms), k = 0, 1, 2, …, K} can be constructed explicitly using an algorithm
developed in Ramaswami (1985). Those transition blocks (or matrices) are associated
with the arrivals, departures, and workloads of customers, respectively. In this paper,
we use a slightly different iterative method to construct those matrices. The method
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used in this paper is more amenable for showing properties (e.g., Propositions 2.1 and
2.2) that are used in developing the main algorithm. For completeness, we present the
iterative method in “Appendix A”. The following properties of the transition blocks
are used in the paper.

Proposition 2.1 For the transition blocks in expression (3), we have (i) S+(k, ms)e =
λe, for k = 0, 1, 2, …, K − 1; (ii) S(0, ms) = 0; and (iii) S−(k, ms)e + S(k, ms)e =
0, for k =1, 2, …, K.

Proof We first point out that this proof does not depend on the details of the construc-
tion process of the matrices. Since the customer arrival rate is λ, it is easy to see that
S+(k, ms)e = λe. Since the service process is governed only by individual (underly-
ing) Markov processes associated with individual servers, we must have S−(k, ms)e
+ S(k, ms)e = 0. This completes the proof of Proposition 2.1.

Next, we focus on transitions related to states in Ω(K). Recall that ϕ =
(ϕ1, ϕ2, . . ., ϕms ) is the stationary distribution associated with the P H -renewal pro-
cess. Define row vector φ = (φ(n) : n ∈ Ω(K )), where

φ(n) = K !
n1! · · · nms !

ms∏
j=1

ϕ
n j
j , for n = (n1, . . . , nms ) ∈ Ω(K ), (4)

which is the probability mass function of the well-known multi-nomial distribution
and we have φe = 1, i.e.

∑
n∈Ω(K )

φ(n) =
∑

n∈Ω(K )

K !
n1! · · · nms !

ms∏
j=1

ϕ
n j
j =

⎛
⎝ ms∑

j=1

ϕ j

⎞
⎠

K

= 1, (5)

sinceϕe=1. Elements in vector φ are organized in the same order as the states inΩ(K),
which are arranged lexicographically (see Eq. (50)). The vector φ can be constructed
recursively as follows. Let �(0, m) = 1, for m = 1, 2, …, ms , and � (k, 1) = ϕk

1 , for
k = 0, 1, 2, …, K ;

� (k, m)

=
(

� (k, m − 1),
� (k − 1, m − 1)k!ϕm

(k − 1)!1! , . . . ,
�(0, m − 1)k!ϕk

m

0!k!
)

=
(

� (k − j, m − 1)
k!ϕ j

m

(k − j)! j ! : j = 0, 1, . . . , k

)
, (6)

for m = 1, 2, …, ms , and k = 1, 2, …, K. In Eq. (6), the expression k!ϕ j
m/((k − j)! j !)

can be evaluated numerically by using, for j = 1, 2, . . . , k,

k!ϕ j
m

(k − j)! j ! =
(

k

j
ϕm

) (
k − 1

j − 1
ϕm

)
· · ·

(
k − ( j − 1)

j − ( j − 1)
ϕm

)
, (7)
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An M/PH/K queue with constant impatient time 145

which avoids the computation of k!. Then we obtain φ = � (K , ms). ��
Proposition 2.2 That S(K , ms) + S−(K , ms)S+(K − 1, ms)/λ is an irreducible
infinitesimal generator of a continuous time Markov chain and its corresponding
stationary distribution is given by φ, i.e, φ(S(K , ms) + S−(K , ms)S+(K −1, ms)/λ)

= 0 and φe = 1. In addition, we have φS−(K , ms)e = K/(−βS−1e).

Proof Note that S+(K − 1, ms)/λ gives the transition probabilities from Ω(K–1) to
Ω(K), given that a customer has just arrived. It is then clear that S(K, ms) + S−(K,
ms)S+(K − 1, ms)/λ gives transition rates for transitions between states in Ω(K ),
given that there are always waiting customers. Thus, the matrix has to be an infinitesi-
mal generator. Since the PH-representation of the service workload is irreducible, the
infinitesimal generator is also irreducible. In steady state, since ϕ j is the probability
that the service phase of a server is j, the probability that the service state is n ∈ Ω(K )

is given by φ(n). Thus, φ is the stationary distribution of the Markov chain associated
with the infinitesimal generator.

For state n ∈ Ω(K ), the total service completion rate is
∑ms

j=1 n j t0j , where t0j is the

j-th element of T0 (i.e., T0 =
(

t0j

)
ms×1

). Then we have

φS−(K , ms)e =
∑

n∈Ω(K )

φ(n)

⎛
⎝ ms∑

j=1

n j t
0
j

⎞
⎠ =

ms∑
j=1

⎛
⎝ ∑

n∈Ω(K )

φ(n)n j

⎞
⎠ t0j

=
ms∑
j=1

⎛
⎝ ∑

n∈Ω(K )

K !
n1! · · · nms !

ms∏
i=1

ϕ
ni
i n j

⎞
⎠ t0j

= K
ms∑
j=1

⎛
⎝ ∑

n∈Ω(K ): n j ≥1

(K − 1)!ϕn j −1
j

n1! · · · (n j − 1)! · · · nms !
ms∏

i=1: i �= j

ϕ
ni
i

⎞
⎠ ϕ j t

0
j

= K
ms∑
j=1

⎛
⎝ ∑

n∈Ω(K−1)

(K − 1)!
n1! · · · nms !

ms∏
i=1

ϕ
ni
i

⎞
⎠ ϕ j t

0
j

= K
ms∑
j=1

( ms∑
i=1

ϕi

)K−1

ϕ j t
0
j = K

ms∑
j=1

ϕ j t
0
j = K

β(−S)−1e
. (8)

This completes the proof of Proposition 2.2. ��

3 Stationary distribution

We are interested in the stationary distribution of {(a(t), Ie(t), n1(t), …, nms (t)), t ≥
0}. If τ < ∞, the Markov process is Harris recurrent (Harris 1956) and its stationary
distribution exists, which can be proved similar to that in Kim and Kim (2015). In this
section, we introduce a set of equations for the stationary distribution and present its
solution. In steady state, we define, for an empty system,
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• p0(i) = P{a(t) = –∞, Ie(t)= ie, n1(t)= · · · = nms (t)=0}, for ie= 1, 2, …, me, and
• p0 = (p0(1), p0(2), …, p0(me));

for a system with only k customers (in service), for k = 1, 2, …, K,

• pk(ie, n) = P{a(t) = –∞, Ie(t) = ie, n1(t) = n1, …, nms (t) = nms }, for ie= 1, 2, …,
me, and n∈ Ω(k),

• pk(ie) = (pk(ie, n), n∈Ω(k)), for ie= 1, 2, …, me, and
• pk = (pk(1), pk(2), …, pk(me));

and, for a system with at least one waiting customer,

pK+1(x, ie,n) = d

dx
P {a(t) < x, Ie(t) = ie, ni (t) = ni , i = 1, . . . , ms} , (9)

for 0 ≤ x < τ , ie = 1, 2, . . . , me, and n∈ Ω(K ), where τ is constant and the
maximum waiting time of each customer. The vector pK +1(x) is defined in a way
similar to pK .

For better understanding of the analysis, we would like to point out that elements in
vectors {p0, p1, …, pK } are probabilities and the elements in pK +1(x) are probability
density functions (we shall call them transition rates throughout the paper as they
associate with transitions of the age of the customer at the head of the queue). Similar
to Choi et al. (2004) and Kim and Kim (2015), the following fundamental equations
can be established for {p0, p1, …, pK ,pK +1(x)}:

0 = p0(−λI + Q) + p1(M ⊗ S−(1, ms));
0 = pk−1(I ⊗ S+(k − 1, ms)) + pk (−λI + Q ⊗ I + M ⊗ S(k, ms))

+pk+1
(
M ⊗ S−(k + 1, ms)

)
, for k = 1, 2, . . . , K − 1;

0 = pK−1(I ⊗ S+(K − 1, ms)) + pK (−λI + Q ⊗ I + M ⊗ S(K , ms))

+1

λ

∫ τ

0
pK+1(y)e−λydy

(
M ⊗ (

S−(K , ms)S+(K − 1, ms)
))

+pK+1(τ )e−λτ ;
d

dx
pK+1(x) = pK+1(x) (Q ⊗ I + M ⊗ S(K , ms)) + pK+1(τ )λe−λ(τ−x)

+
∫ τ

x
pK+1(y)e−λ(y−x)dy

(
M ⊗ (

S−(K , ms)S+(K − 1, ms)
))

,

for 0 ≤ x < τ ;
pK+1(0) = λpK , (10)

where “⊗” represents Kronecker product of matrices. The derivation of the above
equations is routine but tedious. Intuitively, the first term in the second, third, and
fourth equations is related to arrivals, the middle term is related to phase changes of
the environment and workload, and the last term is related to departures. Note that the
Q matrix is used to modulate the phase of the environment since the service rate can
change if the environment changes. We omit the details.
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An M/PH/K queue with constant impatient time 147

We present expressions of {p0,p1, . . .,pK ,pK+1(x)} in the rest of this section.
First, we find a relationship between {p0,p1, . . .,pK }. To that end, we define the
following auxiliary matrices that appear in the expressions of those vectors:

D1 = (M ⊗ S−(1, ms))(λI − Q)−1;
Dk+1 = (

M ⊗ S−(k + 1, ms)
)

× (
λI − Q ⊗ I − M ⊗ S(k, ms) − Dk

(
I ⊗ S+(k − 1, ms)

))−1
, (11)

for k = 1, 2, . . . , K − 1.

Proposition 3.1 The matrices {Dk, k = 1, 2, . . ., K} exist and are nonnegative.

Proof Since all eigenvalues of Q have a negative real part, except the eigenvalue zero,
it is easy to see that λ is not an eigenvalue of Q. Then λI − Q is invertible. Let
δ = max{|Q j, j |}. Then λI − Q = (λ+ δ)I − (Q + δ I ), and all eigenvalues of matrix
(Q + δ I )/(λ + δ) are within the unit disk. Then

(λI − Q)−1 = 1

λ + δ

∞∑
n=0

(
δ I + Q

λ + δ

)n

> 0, (12)

elementwise. Consequently, D1 exists and is nonnegative. Since (λI–Q)e = λe, we
have λ(λI–Q)−1e = e andD1e = (M⊗S−(1,ms))e/λ. By induction and Proposition 2.1,
it can be shown that, for k = 1, 2, …, K,

Dke = (
M ⊗ S−(k, ms)

)
e/λ;(

Q ⊗ I + M ⊗ S(k, ms) + Dk
(
I ⊗ S+(k − 1, ms)

))
e = 0. (13)

In theproof,weuse the facts thatmatrix Q⊗I+M⊗S(k, ms)+ Dk
(
I ⊗ S+(k−1, ms)

)
is an infinitesimal generator and λI − (Q ⊗ I + M ⊗ S(k, ms) + Dk(I ⊗
S+(k − 1, ms))) is invertible and its inverse is nonnegative, by a similar argument
used for Eq. (12). This completes the proof of Proposition 3.1.

By Eq. (10) and Proposition 3.1, we obtain

pk = pK DK · · · Dk+1, for k = 0, 1, 2, . . . , K − 1. (14)

Next, we find pK+1(x), which is used to find pK . By differentiating with respect
to x the 4-th equation in the system of Eq. (10), we obtain, for 0 ≤ x < τ ,

0 = d2pK+1(x)

dx2
− dpK+1(x)

dx
(λI + Q ⊗ I + M ⊗ S(K , ms)

+λpK+1(x) (Q ⊗ I )

+λpK+1(x)

(
M ⊗

(
S(K , ms) + S−(K , ms)S+(K − 1, ms)

λ

))
. (15)
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Following a similar approach in Choi et al. (2004) or Kim and Kim (2015), a closed
form solution of pK +1(x) can be obtained explicitly (see “Appendix B” for more
details). If ρ �= 1, we obtain, for 0 ≤ x < τ ,

pK+1(x) = u1 exp {λ(R − I )(τ − x)}
+u2 exp {(λG + Q ⊗ I + M ⊗ S(K , ms)) x} ,

(16)

where R and G are the minimal nonnegative solutions to matrix equations

R2A0 + R A1 + A2 = 0;
A0G2 + A1G + A2 = 0,

(17)

respectively,

A0 = λI,
A1 = Q ⊗ I + M ⊗ S(K , ms) − λI,

A2 = 1

λ
M ⊗ (

S−(K , ms)S+(K − 1, ms)
) ;

(18)

and {u1, u2} is the unique solution to linear system,

0 = u1eλ(R−I )τ
(

DK (I ⊗ S+(K − 1, ms))
1

λ
− R

)

+ u2

(
G + 1

λ

(
A1 + DK (I ⊗ S+(K − 1, ms))

)) ;
0 = u1 (A1 + λI + λR) + u2λe(λG+A1+λI )τ (I − G) ,

(19)

with normalization condition 1 = ∑K
k=0 pke + ∫ τ

0 pK+1(x)edx . If ρ < 1,

1 = 1

λ
u1 (R − I + ξ(π ⊗ φ))−1

(
eλ(R−I )τ − I + λτξ(π ⊗ φ)

)
e

+u2 (λ(G + I ) + A1)
−1

(
e(λ(G+I )+A1)τ − I

)
e

+1

λ

(
u1eλ(R−I )τ + u2

)⎛
⎝e +

K−1∑
k=0

⎛
⎝K−(k+1)∏

j=0

DK− j

⎞
⎠ e

⎞
⎠ , (20)

and, if ρ > 1,

1 = 1

λ
u1 (R − I )−1

(
eλ(R−I )τ − I

)
e

+u2 (λ(G + I ) + A1 + ζ (π ⊗ φ))−1

×
(

e(λ(G+I )+A1)τ − I + τζ (π ⊗ φ)
)
e

+1

λ

(
u1eλ(R−I )τ + u2

) ⎛
⎝e +

K−1∑
k=0

⎛
⎝K−(k+1)∏

j=0

DK− j

⎞
⎠ e

⎞
⎠ , (21)
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vector ξ , is the right maximal eigenvector of R satisfying (π⊗φ)ξ =1 (i.e., Rξ = ξ

and (π⊗φ)ξ = 1), and vector ζ is the right maximal eigenvector of λ(G + I ) + A1
satisfying (π ⊗ φ)ζ =1 (i.e., (λ(G + I ) + A1)ζ = 0 and (π⊗φ)ζ = 1).

Details on properties related to {R,G,u1, u2} and justification of the above solutions
can be found in Sect. 4 and “Appendix B”.

By Eqs. (10) and (16), we obtain

pK = 1

λ
pK+1(0) = 1

λ
(u1 exp{λ(R − I )τ } + u2) . (22)

In summary, {p0, p1, …, pK ,pK +1(x)} can be obtained in the following steps, if ρ

�= 1.

(i) Computing {R, G} Eq. (17).
(ii) Use Eq. (4) to find φ, and compute ξ or ζ .
(iii) Computing {u1, u2} based on Eqs. (19)–(20) or (19) and (21).
(iv) Compute pK +1(x) by Eq. (16).
(v) Compute pK by Eq. (22).
(vi) Compute {Dk , k = 1, 2, …, K} by Eq. (11).
(vii) Compute {p0, p1, …, pK −1} by Eq. (14).

Theorem 3.1 If ρ �= 1, Eq. (10) has a unique solution given by Eqs. (14), (16), and
(22).

Proof The solution is presented in terms of {u1, u2, R,G}. Justification of the solution,
e.g., the invertibility of some matrices, shall be given in Sect. 4 and “Appendix B”.
The uniqueness of the solution can be addressed in a way similar to that in Choi et al.
(2004) and Kim and Kim (2015). Details are omitted.

Note We would like to point out that solutions for the case with ρ = 1 can be obtained
but are tedious. Thus, we present solutions for that case in “Appendix B”.

4 Properties of interest

In this section, we present some properties that can be used for the justification of the
results presented in Sect. 3. To understand matrices R and G, it is helpful to consider
a fictitious quasi birth-and-death (QBD) process defined by {A0, A1, A2} (and some
matrices for boundary transitions). The theory on QBD processes can be applied to
show properties related to R and G (see Neuts 1981; Latouche and Ramaswami 1999;
He 2014).

Proposition 4.1 Vector π ⊗φ is the stationary distribution of infinitesimal generator
A0+A1+A2. Further, we have ρ = (π ⊗ φ)A0e/((π ⊗ φ)A2e).
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Proof By the definition of π and Proposition 2.2, we have

(π ⊗ φ) (A0 + A1 + A2)

= (π ⊗ φ)

(
Q ⊗ I + M ⊗ S(K , ms) + 1

λ
M ⊗ (

S−(K , ms)S+(K − 1, ms)
))

= π Q ⊗ φ + π M ⊗ φ

(
S(K , ms) + 1

λ

(
S−(K , ms)S+(K − 1, ms)

)) = 0.

(23)

The second part of the proposition also comes from Proposition 2.2. This completes
the proof of Proposition 4.1.

Proposition 4.2 (a) The matrices R and G are invertible only if K = 1 and ms = 1;
(b) The matrices λR + A1 and λG + A1 are always invertible; and (c) The matrices
λ(R + I ) + A1 and λ(G + I ) + A1 are invertible, if ρ < 1; and non-invertible, if ρ

≥ 1.

Proof To show the results, we define matrices R̂ and Ĝ as the minimal nonnegative
solutions to

A0 + R̂ A1 + R̂2A2 = 0;
A0 + A1Ĝ + A2Ĝ2 = 0,

(24)

respectively. Since A0 = λI is invertible, both R̂ and Ĝ are invertible. Let sp(.) the
maximal absolute value of all eigenvalues of a matrix. It is well-known that, if ρ < 1,
sp(R̂) < 1 and sp(Ĝ) < 1; otherwise, sp(R̂) = 1 and sp(Ĝ) = 1.

(a) By Latouche (1987), we have λR = A2Ĝ and λG = R̂ A2. Since A2 is invertible
only if K = 1 and ms = 1, R and G are invertible only if K = 1 and ms = 1.

(b) Since λG + A1 = −λR̂−1, λG + A1 is always invertible. Since λR + A1 =
−λĜ−1, λR + A1 is always invertible.

(c) Since λ(G+I)+A1 = λ(I − R̂−1), λ(G + I ) + A1 is invertible, if ρ < 1; and
non-invertible, if ρ ≥ 1. Since λ(R + I ) + A1 = λ(I − Ĝ−1), λ(R + I ) + A1 is
invertible, if ρ < 1; and non-invertible, if ρ ≥ 1.

This completes the proof of Proposition 4.2. ��
Proposition 4.3 The infinitesimal generator A0+A1+A2 is irreducible.

(i) If ρ ≤ 1, sp(R) = 1; otherwise, sp(R) < 1.
(ii) Vector π ⊗ φ is a left maximal eigenvector of R. If ρ ≤ 1, (π ⊗ φ)R = π ⊗ φ;

otherwise, (π ⊗ φ)R ≤ π ⊗ φ and (π ⊗ φ)R �= π ⊗ φ. (Note: The comparison
between vectors is element-wise.)

(iii) If ρ ≤ 1, G is stochastic and sp(G) = 1; otherwise, G is substochastic and sp(G)
< 1.

(iv) Vector π ⊗ φ is a left maximal eigenvector of λ(G + I ) + A1. If ρ < 1, (π ⊗
φ)(λ(G + I ) + A1) ≤ 0 and (π ⊗ φ)(λ(G + I ) + A1) �= 0. otherwise, (π ⊗
φ)(λ(G + I ) + A1) = 0.
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Proof Parts (i), (ii), and (iii) are known results for a QBD process with transition
blocks {λI, Q ⊗ I + M ⊗ S(K , ms) − λI, M ⊗ (S−(K , ms)S+(K − 1, ms))/λ}.

Next, we prove part (iv). By Eq. (24), we have −λR̂−1 = A1 + R̂ A2. Since

(π ⊗ φ)R̂ ≤π ⊗ φ, we obtain λ(π ⊗ φ)
(

I − R̂−1
)

≤ 0. If ρ < 1, sp
(

R̂
)

< 1 and,

consequently, λ(π ⊗ φ)
(

I − R̂−1
)

�= 0; otherwise, λ(π ⊗ φ)
(

I − R̂−1
)

= 0. By

Proposition 4.2, we have λ(G + I ) + A1 = λ(I − R̂−1). Part (iv) is proved. This
completes the proof of Proposition 4.3. ��

Recall vectors ξ and ζ defined and used in Sect. 3. Proposition 4.3 implies the exis-
tence of ξ , if ρ < 1, ζ , if ρ > 1, and both ξ and ζ , if ρ = 1. Based on Proposition 4.3,
the following results can be proved routinely.

Proposition 4.4 If ρ < 1, the matrix R − I is non-invertible and the matrix R − I
+ ξ(π ⊗ φ) is invertible. If ρ > 1, the matrix R − I is invertible and the matrix
λ(G + I ) + A1 + ζ (π ⊗ φ) is invertible. Ifρ = 1, the matrix R − I is non-invertible,
the matrix R − I + ξ(π ⊗φ) is invertible, and the matrix λ(G + I )+ A1 + ζ (π ⊗φ)

is invertible.

The inverses of R − I+ ξ(π ⊗ φ) and λ(G + I ) + A1+ ξ(π ⊗ φ) play a key role
in computing various quantities and performance measures (e.g., Eq. (20) and (27)).
If ρ ≤ 1, the inverses exist, and ξ and (π ⊗ φ) are their right and left eigenvectors
corresponding to eigenvalue one, respectively.

5 Computation of two integrals

In this section, we develop computational procedures for two integrals that are used
for computing the distributions and moments of the waiting times and queue lengths
in Sect. 6. We begin with the following integral, which is the key for computing the
moments of waiting time,

hn =
∫ τ

0
xnpK+1(x)dx, for n = 0, 1, 2, . . . (25)

Note that h0 = ∫ τ

0 pK+1(x)dx , which is used in the normalization condition for u1
and u2 (see (38)), and the computations of the distributions of waiting time and queue
length (see (44)). Define two auxiliary matrices, for n = 0, 1, 2, …,

HR,n =
∫ τ

0
xn exp{λ(R − I )(τ − x)}dx;

HG,n =
∫ τ

0
xn exp {(λG + Q ⊗ I + M ⊗ S(K , ms)) x} dx .

(26)

By Proposition 4.3, if ρ ≤ 1, matrices R − I + ξ(π ⊗ φ) and λG + A1 +λI are
invertible, and, if ρ > 1, matrices R − I and λG + A1 +λI + ζ (π ⊗φ) are invertible.
By routine calculations, we obtain

123



152 Q.-M. He et al.

HR,0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

λ

(
e{λ(R−I )τ } − I + λτξ(π ⊗ φ)

)
× (R − I + ξ(π ⊗ φ))−1 , if ρ ≤ 1;

1

λ
(exp{λ(R − I )τ } − I ) (R − I )−1 , if ρ > 1,

HR,n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

λ

(
λτ n+1

n + 1
ξ(π ⊗ φ) + nHR,n−1 − τ n I

)
×(R − I + ξ(π ⊗ φ))−1, for n = 1, 2, . . . , if ρ ≤ 1;

1

λ

(
nHR,n−1 − τ n I

)
(R − I )−1, for n = 1, 2, . . . , if ρ > 1.

(27)

and

HG,0 =

⎧⎪⎪⎨
⎪⎪⎩

(
e(λ(G+I )+A1)τ − I

)
(λ(G + I ) + A1)

−1 , if ρ ≤ 1;(
e(λ(G+I )+A1)τ − I + τζ (π ⊗ φ)

)
× (λ(G + I ) + A1 + ζ (π ⊗ φ))−1 , if ρ > 1;

HG,n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
τ ne(λ(G+I )+A1)τ − nHG,n−1

)
× (λ(G + I ) + A1)

−1 , for n = 1, 2, . . . , if ρ ≤ 1;(
τ ne(λ(G+I )+A1)τ + τ n+1

n + 1
ζ (π ⊗ φ) − nHG,n−1

)
× (λ(G + I ) + A1 + ζ (π ⊗ φ))−1 , for n = 1, 2, . . . , if ρ > 1;

(28)

Consequently, by Eq. (16), we obtain

Proposition 5.1 The integral hn can be computed by

hn = u1HR,n + u2HG,n, for n = 0, 1, 2, . . . (29)

Next, for computing the mean queue length (see equations (41) and (42) in Sect. 6),
we consider auxiliary vectors, for l = 0, 1, 2, …,

Γ (l, 0) =
∞∑

n=K+1

∫ τ

0
nlpK+1(x)

(
(λx)n−K−1

(n − K − 1)!e−λx
)

dx . (30)

In general, we define, for l = 0, 1, 2, …, and j = 0, 1, 2, …,

Γ (l, j) = λ j
∞∑

n=K+1+ j

∫ τ

0
x j nlpK+1(x)

(
(λx)n−K−1− j

(n − K − 1 − j)!e−λx
)
dx . (31)

By rewriting n as n = n − K − 1 − j + K + 1 + j , we obtain

Γ (l, j) = Γ (l − 1, j + 1) + (K + 1 + j)Γ (l − 1, j). (32)
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Note that Γ (0, j) can be obtained as, for j = 0, 1, 2, …,

Γ (0, j) = λ j
∞∑

n=K+1+ j

∫ τ

0
x jpK+1(x)

(
(λx)n−K−1− j

(n − K − 1 − j)!e−λx
)
dx

= λ j
∫ τ

0
x jpK+1(x)dx = λ j (

u1HR, j + u2HG, j
)
.

(33)

Consequently, we obtain

Proposition 5.2 The sequence {Γ (l, 0), l = 0, 1, 2, …} can be computed recursively
by using Eqs. (32) and (33).

6 Performance measures

A number of performance measures can be obtained from {p0, p1, …, pK ,pK +1(x)}
and the two quantities obtained in Sect. 5. The most natural one is the stationary
distribution of the age of the customer at the head of the queue, which is given by

lim
t→∞ P{a(t) < x} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K∑
k=0

pke, for x < 0;
K∑

k=0

pke +
∫ x

0
pK+1(y)edy, for 0 ≤ x < τ ;

1, for x ≥ τ.

(34)

The integral
∫ x
0 pK+1(y)dy can be computed using (29) with τ replaced by x in (27)

and (28). Letting x = τ , the above equation leads to 1 = ∑K
k=0 pke+h0e, which is the

normalization condition used in (20) and (21) and can be used to check computation
accuracy.

In the rest of this section, we focus on the customer loss probability, waiting times,
and queue lengths.

Note that if the number of customers in the system is less than K, a new arrival
can enter a server for service. Therefore, the loss of customers can happen only if
all servers are occupied. The ratio of customer loss rate and the customer arrival rate
gives the percentage of customers lost per unit time, which is also the probability that
a customer is lost.

Proposition 6.1 The customer loss probability is given by

ploss = 1

λ
pK+1(τ−)e = 1

λ
(u1e + u2 exp {(λ(G + I ) + A1)τ } e) ;

lim
τ→∞ ploss = max

{
0, 1 − 1

ρ

}
.

(35)
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Proof When the waiting time of a customer reaches τ , the customer is lost. The
probability of a customer being lost (or the probability a customer leaves the system
without service) can be obtain as the ratio of customer loss rate pK +1(τ–)e at an
arbitrary time and the total arrival rate λ. The expression of ploss can be obtained from
Eq. (16) directly.

For the limit of ploss , it is easy to see the result for ρ ≤ 1. For ρ > 1, we must have
pK approaches zero as τ goes to infinity. By Eq. (22), we must have u2 = 0 if τ →
∞ (recall that sp(R) < 1 for this case). By the expression of ploss , we obtain ploss =
u1e/λ ifτ → ∞. Next, we find u1e/λ if τ = ∞. By equations (19) and (21), if τ →
∞, we obtain

0 = u1 (λR + λI + A1) ;
1 = u1

λ
(I − R)−1e. (36)

The first equation in (36) leads to u1 = u1Ĝ. Thus, u1 is unique up to a constant
multiplier.

To show the results, we establish a relationship between vector u1 and the prob-
abilities that the system is empty in a PH/M/1 queue. We consider a PH/M/1 queue
for which the service times are exponentially distributed with parameter λ and the
arrival process is determined by the superposition of K identical PH-renewal process
(see Neuts 1981) with PH-representation (β, T ) modularized by the Markov process
Q. For this PH/M/1 queue, a QBD process can be constructed for its queue length
process, which has the same R matrix. It can then be verified that π0 = u1/λ, where
π0 contains the conditional probability that the queueing system is empty. By Neuts
(1981), we obtain ploss = u1e/λ = π0e. It is obvious that, for the PH/M/1 queue,
the service rate is λ and the arrival rate is (π ⊗ φ)A2e = Kμ/(β(−T )−1e). Thus, we
have ploss= π0e = 1 − Kμ/(β(−T )−1eλ) = 1 − 1/ρ. This completes the proof of
Proposition 6.1.

Let Wa be the waiting time of an arbitrary customer, and Wq the waiting time of a
customer who receives service. By the conditional PASTA (König and Schmidt 1990),
the distribution of the waiting time of an arbitrary customer equals the distribution of
the waiting time of the “fictitious” customer leaving the waiting queue at an arbitrary
time (leaving the system or entering service).

Proposition 6.2 The density function of the waiting time Wa of an arbitrary customer
is given by

P{Wa = 0} =
K−1∑
k=0

pke;

d

dx
P{Wa ≤ x} = 1

λ
pK+1(x)

(
M ⊗ S−(K , ms)

)
e, for 0 < x < τ ;

P{Wa = τ } = 1

λ
pK+1(τ−)e. (37)
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Proof A customer enters service with zero waiting time if and only if there is at least
one available server when the customer arrives. Then P{Wa = 0} is obtained. Note that
the total rate for customers leaving the waiting queue is λ. A customer with waiting
time 0< x < τ enters a server if and only if there is a service completion at that epoch.
This gives the density at Wa = x. A customer leaves the system without service if and
only if its age reaches τ . This leads to P{Wa = τ }. By König and Schmidt (1990), the
proposition is proved. ��
Note that the total average departure (including both customerswith orwithout service)
is λ. By the law of total probability, we must have

1 = P{Wa ≤ τ }

=
K−1∑
k=0

pke + 1

λ

∫ τ

0
pK+1(y)dy

(
M ⊗ S−(K , ms)

)
e + pK+1(τ )e

λ

=
K−1∑
k=0

pke + 1

λ
h0

(
M ⊗ S−(K , ms)

)
e

+1

λ
(u1 + u2 exp((λ(G + I ) + A1)τ ) e, (38)

which is useful for checking computation accuracy. Explicit expression for integral
h0 =

∫ τ

0 pK+1(y)dy is given in (29). The moments of waiting times can be obtained
in terms of {H R,n , HG,n , n = 0, 1, 2, …} as follows, for n = 1, 2, 3, …,

E[W n
a ] = 1

λ

∫ τ

0
xnpK+1(x)dx

(
M ⊗ S−(K , ms)

)
e + τ n 1

λ
pK+1(τ−)e

= 1

λ

(
u1HR,n + u2HG,n

) (
M ⊗ S−(K , ms)

)
e + τ n 1

λ
pK+1(τ−)e. (39)

Using conditional probabilities, the density function of the waiting time Wq of
arbitrary customer who received service can be obtained as

P{Wq = 0} = 1

1 − ploss

K−1∑
k=0

pke;

dP{Wq ≤ x}
dx

= pK+1(x)
(
M ⊗ S−(K , ms)

)
e

(1 − ploss)λ
, for 0 < x < τ ;

P{Wq ≥ τ } = 0. (40)

Let Nall be the total number of customers in the system at an arbitrary time, which is
the sum of the number of customers in service and the number of customers waiting in
queue. By the well-known PASTA property, Nall has the same probability distribution
as the number of customers seen by an arriving customer. Customers waiting in queue
are the customer at the head of the queue and the customers who arrive during the
waiting period of the head-of-queue customer.
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Proposition 6.3 The distribution of Nall is given by

P{Nall = n} =
⎧⎨
⎩
pne, for n = 0, 1, . . . , K ;∫ τ

0
pK+1(x)e

(
(λx)n−K−1e−λx

(n − K − 1)!
)

dx, for n ≥ K + 1.
(41)

Proof If Nall = n > K , there are K customers in service and n − K customers are
waiting for service. Among the n − K customers, one is waiting at the head of the
queue and the other n − K − 1 customers are all arrived when the first customer is
waiting. By conditioning on the age of the customer at the head of the queue, we can
calculate the probability that there are n − K −1 customers wait behind that customer.
Note that the number of arrivals in [0, x] has a Poisson distribution with parameter
λ. Then the proposition is proved by conditioning on the age of the head-of-queue
customer.

The moments of Nall can be obtained as, for l = 1, 2, …,

E[Nl
all ] =

K∑
n=0

nlpne +
∞∑

n=K+1

∫ τ

0
nlpK+1(x)e

(
(λx)n−K−1

(n − K − 1)!e−λx
)
dx

=
K∑

n=0

nlpne + Γ (l, 0)e. (42)

Let Nq be the number of waiting customers in queue. Then the distribution of Nq

is given by

P{Nq = n} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K∑
k=0

pke, for n = 0;
∫ τ

0
pK+1(x)e

(
(λx)n−1

(n − 1)!e−λx
)
dx, for n = 1, 2, . . .

(43)

Let Nws be the number of working servers. Then the distribution of Nws is given
by

P{Nws = k} =
⎧⎨
⎩
pke, for k = 0, 1, 2, . . . , K − 1;
pK e +

∫ τ

0
pK+1(x)edx = pK e + h0e, for k = K .

(44)

Note that E[Nall ], E[Nq ], E[Nws], E[Wa], and E[Wq ] are finite if τ is finite.
Therefore, Little’s law holds for our queueing system and we must have
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E[Nall ] = λE[Wa] + E[Nws]

= λE[Wa] +
K∑

k=0

kpke + K
∫ τ

0
pK+1(x)edx

= λ
(

plossτ + (1 − ploss)E[Wq ]) +
K∑

k=0

kpke + Kh0e. (45)

This relationship is useful for checking computation accuracy.

7 Numerical examples

Wepresent three examples to demonstrate the feasibility of the computation procedure
developed in Sects. 3, 4, 5 and 6 and “Appendixes A and B”, and to explore the rela-
tionship between system parameters {λ, τ , K} and system performance measures such
as the loss probability, mean waiting time and mean queue length. Before presenting
our examples, we briefly discuss a few computational issues and, for some of them,
provide hints on how the issue can be addressed.

(i) Computation results, especially inversematrices, become inaccurate if |Ω(K )| is
big (e.g., |Ω(K )| ≥ 1000). Thus, avoiding the use of those inversematrices could
improve computation efficiency. In our computation, we evaluate expressions
with an inverse matrix by transforming the problem into a linear system. For
example, to calculate X = B A−1, we solve the linear system X A = B to find
X , which avoids the use of the inverse matrix of A. The computation of all
quantities in Sect. 5 and all performance measures in Sect. 6 can be done in this
manner.

(ii) Computation results may becomes inaccurate if ρ is close to one. For such a case,
the source of inaccuracy comes mainly from matrices R and G. More iterations
are needed in the computation of the two matrices if ρ is one or close to one.

(iii) The normalization conditions (20) and (21) can be handled by solving linear
systems to avoid computing inverse matrices.

(iv) Use Propositions 2.1 and 2.2 to check the correctness/accuracy of the transition
blocks and vector φ. Use Proposition 4.3 to check the correctness/accuracy of
matrices R and G. Use Eqs. (38) and (45) to check the correctness/accuracy of
performance measures. Use limits to check correctness of computation: (a) If τ

goes to infinity, the queueing systembecomes the classical M/P H/K queue; and
(b) If K goes to infinity, the queueing system becomes the classical M/P H/∞
queue.

Example 7.1 We consider the example in Kawanishi and Takine (2016), for which λ

= 4.8, τ = 1, K = 20, me = 1, Q = 0 (since there is only one environment state),
μ = μ1 = 1,

ms = 2, β = (1, 0), T =
(−0.25 0.25

0 −1

)
; (46)
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Table 1 The moments of waiting times and queue length

n 1 2 3 4 5 6 7 8

E[W n
a ] 0.519 0.425 0.374 0.3418 0.3194 0.3031 0.2905 0.2806

E[N n
all ] 21.81 487.5 1.1e+4 2.5e+5 6.1e+6 1.4e+8 3.6e+9 9.0e+10

Fig. 1 Performance measures for λ in [0, 100]

For this queue, ρ = 1.2, ploss = 0.1950, E[Nq ] = 2.49, E[Nws] = 19.32, and the
moments of waiting time Wa and queue lengths Nall are given in Table 1.

Next, by letting parameters {λ, τ, K } vary, we have a look at their impact on per-
formance measures {ploss , E[Wa], E[Nall ]}.
(i) First, we allow the customer arrival rate λ to go from 1 to 100, while all other

system parameters remain the same. We plot {ploss , E[Wa], E[Nall ]} as functions
of λ in Fig. 1.

Figure 1 shows that ploss approaches 1 and E[Wa] approaches 1. The mean waiting
time E[Wa] approaches 1 since τ = 1. The mean queue length E[Nall ] approaches
infinity as λ increases to infinity.

(ii) Second, we let the impatient time τ to go from 1 to 100. We plot {ploss ,E[Wa],
E[Nall ]} as functions of τ in Figure 2.

For this case, the traffic intensity is ρ = 1.2, which is greater than 1. As τ goes to
infinity, the system becomes the classical M/P H/K queue, and the loss probability
converges to 1 − 1/ρ and both the mean waiting time and mean queue length go to
infinity.

(iii) Lastly, we change K from 1 to 300. We plot {ploss , E[Wa], E[Nall ]} as functions
of K in Fig. 3.

For this case, the performancemeasures converge to that of the classical M/P H/∞
queue. For example, the mean queue length converges to 24, which is the mean queue
length of the corresponding classical M/P H/∞ queue.

In Example 7.1, since ms = 2, we have |Ω(K )| = K +1. Consequently, the size of
all matrix blocks (to be called block size) involved in the computation of performance
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Fig. 2 Performance measures for τ in [1, 100]

Fig. 3 Performance measures for K from 1 to 300

Table 2 Values of |Ω(K )| for (ms , K )

ms/K 10 16 20 30 50 100 200

2 11 17 21 31 51 101 201

3 66 153 231 496 1326 5151 20301

4 286 969 1771 5456 23426 – –

5 1001 4845 10626 46376 −− – –

“–” means that the number is more than one hundred thousand.

measures is smaller or equal to me(K + 1), which is linearly increasing in K . The
computation of performance measures can be done for large K effectively. Recall that
|Ω(K )| = (K + ms − 1)!/((ms − 1)!K !). If ms > 2, the sizes of matrix blocks such
as {A0, A1, A2} increase much faster as K increases. We show the values of |Ω(K )|
(i.e., the size of the matrices {A0, A1, A2}) in Table 2 for a few pairs of (ms, K ).

• Suppose that we limit |Ω(K )| to be less than or approximately equal to 5000. If
ms = 3, K can go up to 100. If ms = 4, K can go up to 30. If ms = 5, K can go
up to 16. If me = 1, all those cases can be handled by an average computer with
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Fig. 4 Performance measures for K from 1 to 100

eight gigabytes of memory. If me is two or bigger, the computer memory required
for the implementation of the algorithm increases at the rate m2

e .
• According to the literature on PH-distributions (see Neuts 1981; He 2014), the
probability distributions that can be generated using PH-representations of order
ms = 2, 3, 4, and 5 are quite versatile. Thus, the algorithms developed in this
paper does have the potential to be used in practice.

Example 7.2 We consider a system with λ = 50, τ = 1.5, μ1 = 1, μ2 = 0.5,

ms = 3, β = (0.6, 0.2, 0.2), T =
⎛
⎝−4 0.2 0.5

1 −3 0.5
0.1 1 −3.5

⎞
⎠ ;

me = 2, Q =
(−1 1
0.5 −0.5

)
. (47)

For this example, we havems = 3 andme = 2.We compute performance quantities
for systems with K up to 100. At K = 100, the largest block size is nearly 10, 000.
We plot {ploss, E[Wa], E[Nall ]} as functions of K in Fig. 4. It is interesting to see
that the mean queue length goes up to 90 and then down to 31.1164, which is the
mean queue length of the corresponding M/P H/∞ queue. The reason for that is that
the total queue consists of two parts: customers waiting for service and customers in
service. When K is small, more customers are waiting and abandon the queue. When
K increases, waiting time becomes shorter and the waiting queue increases, and the
queue of customers in service also increases.When K is sufficiently large, due to fixed
customer arrival rate, the queue of waiting customers disappears. Consequently, the
total queue decreases and converges to that of the M/P H/∞ queue.

Example 7.3 We consider a system with λ = 20, τ = 2, me = 1, Q = 0, μ1 = 1,

ms = 4, β = (0.2, 0.2, 0.3, 0.3), T =

⎛
⎜⎜⎝

−5 0.5 0 1
0.5 −4 0.5 0
0 1 −3 1
1 0 1 2

⎞
⎟⎟⎠ . (48)
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Fig. 5 Performance measures for K from 1 to 40

For this example, ms = 4 and me = 1. We plot performance measures for K from 1
to 40 in Fig. 5. The queueing behaviour is quite similar to that of Example 7.2.

8 Discussion

To end this paper, we would like to discuss several issues.

• First, we would like to point out that the solution to (15) can be constructed by
using different sets of {R, G}. For instance, matrices {R̂−1, Ĝ−1}, defined in the
proof of Proposition 4.2, also satisfy Eq. (17) if {R̂, Ĝ are the minimal nonnegative
solutions to Eq. (24). Replacing {R, G}with {R̂−1, Ĝ−1} in all formulas in Sect. 3,
we obtain the same solution {p0, p1, …, pK ,pK +1(x)}. Different from the solution
from Eq. (17), both R̂−1 and Ĝ−1 are invertible. However, for this case, the matrix
λ(Ĝ−1+I)+A1is always non-invertible (see Proposition 4.2). Thus, with respect to
numerical computation, we don’t see immediately the advantage of {R̂−1, Ĝ−1}.
The use of {R̂−1, Ĝ−1} is an interesting issue for further study, though.

• Second, recall that the number of states inΩ(K ) isme(K +ms−1)!/(K !(ms−1)!).
If K is big (e.g., K = 100), a small increase in ms leads to a huge increase in the
number of states in Ω(K ). Consequently, as indicated by Table 2, the algorithm
developed in this paper works well only for small ms . Alternative approach is
required to analyze the queueing model with a moderate or big ms .

• Third, an immediate extension of the M/PH/K queue with customer abandon-
ment is the MAP/PH/K model. Technically, the analysis of the MAP/PH/K model
requires the commutability of some matrices involved in a set of equations similar
to Eq. (10). Thus, a new approach has to be introduced to analyze the MAP/PH/K
extension.

• Finally, the customer impatient time is assumed to be constant in this paper. Need-
less to say that the generalization to models with a non-constant impatient time is
interesting and important. Again, a new approach has to be introduced to analyze
such queueing models. Research in those directions is undergoing.
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Appendix A: transition blocks for the count-server-for-phase approach

In this appendix, we construct the transition blocks in (3) explicitly. First, we need to
specify how states in Ω(0)∪Ω(1)∪ . . . ∪Ω(K) are organized. In general, we define,
for k = 0, 1, …, K, and m = 1, 2, …, K,

Ω(k, m) =
{

(n1, . . . , nm) : integer ni ≥ 0, i = 1, 2, . . . , m,

m∑
i=1

ni = k

}
. (49)

Note that Ω(k) = Ω(k, ms), for k = 0, 1, 2, …, K. We organize the states in Ω(k, m)
lexicographically. Then we have

Ω(k, m) = ∪k
i=0(Ω(k − i, m − 1) × {i}). (50)

It is easy to see that, for m = 1, we have Ω(k, 1) = {k}, and for k = 0, Ω(0, m) =
{(0, . . ., 0)}.

We begin with {S+(k, ms), k = 0, 1, …, K–1}. The basic components to construct
those matrices are {λ, β = (β1, …, βms )}, since the corresponding transitions are
triggered by the arrival of a customer. The vector β has to be utilized to specify the
service phase of the arriving customer. An effective way to construct those matrices is
to generate them iteratively. To that end, we need to construct matrices {S+(k, m), k =
0, 1, …, K–1, m = 1, 2, …, ms} for transitions from Ω(k, m) to Ω(k+1, m). We further
decompose the transitions into transitions from {Ω(k, m–1)×{0}, Ω(k–1, m–1)×{1},
…, Ω(0, m–1)×{k}} to {Ω(k+1, m–1)×{0}, Ω(k, m–1)×{1}, …, Ω(0, m–1)×{k+1}},
respectively. Specifically, for S+(k, m), the construction components are {λβ1, …,
λβm}, and S+(k, m) is given by

Ω(k+1,m−1)×{0} Ω(k,m−1)×{1} · · · Ω(1,m−1)×{k} Ω(0,m−1)×{k+1}⎛
⎜⎜⎜⎜⎜⎝

S+(k,m−1) λβm I

S+(k−1,m−1) λβm I
. . .

. . .
. . .

S+(1,m−1) λβm I

S+(0,m−1) λβm

⎞
⎟⎟⎟⎟⎟⎠

(51)

and S+(0, m) = λ(β1, …, βm), for m = 1, 2, …, ms , and S+(k, 1) = λβ1, for k = 0, 1,
…, K–1.

Now, we construct {S−(k, m), k = 1, 2, …, K, m = 1, 2, …, ms}, which are for
transitions from Ω(k, m) to Ω(k–1, m). The corresponding transitions are triggered
by a service completion. Thus, the construction is based on {t01 , t02 , …, t0ms

} (Note:
Recall that T0 =

(
t0j

)
ms×1

), and we obtain S−(k, m) as
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Ω(k−1,m−1)×{0} Ω(k−2,m−1)×{1} ··· Ω(1,m−1)×{k−2} Ω(0,m−1)×{k−1}⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S_ (k,m−1)

t0m I S_ (k−1,m−1)

. . .
. . .

. . .
. . .

(k−1)t0m I S_ (1,m−1)

kt0m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(52)

and S−(1, m) = (t01 , t02 , …, t0m)′, for m = 1, 2, …, ms , and S−(k, 1) = kt01 , for k = 1, 2,
…, K.

Finally, we construct {S(k, m), k = 0, 1, …, K, m = 1, 2, …, ms}, which are for
transitions from Ω(k, m) to Ω(k, m). We decompose the transitions into three types,
based on the decomposition of the states in Ω(k, m):

(i) Type “+”: transitions from Ω(j, m–1)×{k–j} to Ω(j+1, m–1)×{k–j–1};
(ii) Type “–”: transitions from Ω(j, m–1)×{k–j} to Ω(j–1, m–1)×{k–j+1}; and
iii) Transitions from Ω(j, m–1)×{k–j} to Ω(j, m–1)×{k–j}.
Then the transition matrix S(k, m) from Ω(k, m) to Ω(k, m) can be written as

Ω(k,m−1)×{0} Ω(k−1,m−1)×{1} · · · Ω(1,m−1)×{k−1} Ω(0,m−1)×{k}⎛
⎜⎜⎜⎜⎜⎜⎝

S(k,m−1) Ŝ−(k,m−1)

Ŝ+(k−1,m−1) S(k−1,m−1) Ŝ−(k−1,m−1)
. . .

. . .
. . .

(k−1)Ŝ+(1,m−1) S(1,m−1) Ŝ−(1,m−1)

k Ŝ+(0,m−1) S(0,m−1)

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

0
tm,m I

. . .

(k−1)tm,m I

ktm,m

⎞
⎟⎟⎟⎟⎟⎠ .

(53)

If m = 1, we have S(k, 1) = kt1,1, for k = 0, 1, 2, …, K. We need to construct two
sets of matrices {Ŝ+(k, m), k = 1, 2, …, K, m = 1, 2, …, ms–1} and {Ŝ−(k, m), k =
0, 1, …, K–1, m = 1, 2, …, ms–1}. Note that {Ŝ+(k, m), k = 1, 2, …, K, m = 1, 2, …,
ms–1} are for the transitions from phase m to phases {1, 2, …, m–1}, and {Ŝ−(k, m),
k = 1, 2, …, K, m = 1, 2, …, ms–1} are for the transitions from phases {1, 2, …, m–1}
to phase m. We use the construction methods for {S+(k, m), k = 0, 1, …, K–1, m = 1,
2, …, ms} and {S−(k, m), k = 1, 2, …, K, m = 1, 2, …, ms} in this construction.
(i) The construction of {Ŝ+(k, m), k = 1, 2, . . ., K, m = 1, 2, . . ., ms − 1} is

similar to that of {S+(k, m), k = 0, 1, . . ., K–1, m = 2, 3, . . ., ms}, except
that {λβ1, . . ., λβm} is replaced with {tm+1,1, tm+1,2, . . ., tm+1,m}. In addition,
we have Ŝ+(0, m) = (tm+1,1, · · · , tm+1,m), for m = 1, 2, . . ., ms–1, and
Ŝ+(k, 1) = t2,1, for k = 0, 1, …, K–1.
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(ii) The construction of {Ŝ−(k, m), k = 0, 1, …, K–1, m = 2, …, ms–1} is similar
to that of {S−(k, m), k = 0, 1, …, K–1, m = 2, 3, …, ms}, except that {t01 , t02 ,
…, t0ms−1} is replaced with {t1,m+1, t2,m+1, . . ., tm ,m+1}. In addition, we have

Ŝ−(1, m) = (t1,m+1, . . . , tm,m+1)
′, form = 1, 2,…,ms–1, and Ŝ−(k, 1) = kt1,2,

for k = 1, 2, …, K.

Finally, we summarize the above construction methods to outline the steps to con-
struct {S+(k, ms), k = 0, 1, …, K-1}, {S−(k, ms), k = 1, 2, …, K}, and {S(k, ms), k =
0, 1, 2, …, K}.
Algorithm A.1 Construction of transition blocks for the count-server-for-phase
approach

A.I.1 Compute {S+(k, ms), k = 0, 1, …, K–1}:
(i) S+(k, 1) = λβ1, for k = 0, 1, …, K;

(ii) Use Eq. (51) to construct {S+(k, m), for k = 0, 1, …, K}, for m = 2, 3, …, ms.
A.I.2 Compute {S−(k, ms), k = 1, 2, …, K}:

(i) S−(k, 1) = kt01 , for k = 1, 2, …, K;
(ii) Use equation (52) to construct {S−(k, m), for k = 0, 1, …, K}, for m = 2, 3, …,

ms.
A.I.3 Compute {S(k, ms), k = 1, 2, …, K}:

• If m = 1, we have S(k, 1) = kt1,1, for k = 0, 1, 2, …, K.
• For m = 2, 3, …, ms,

(i) Construct {Ŝ+(k, j), k = 1, 2, . . ., K, j = 1, 2, . . ., m–1} using Eq. (51)
with (tm+1,1, tm+1,2, . . ., tm+1,m) in place of λ(β1, …, βm).

(ii) Construct {Ŝ−(k, m), k = 0, 1, . . ., K–1, m = 2, . . ., ms − 1} using
Eq. (52) with (t1,m+1, t2,m+1, . . ., tm ,m+1)′ in place of (t01 , t02 , …, t0m)′.

(iii) Construct {S(k, m), k = 0, 1, . . ., K}.
end

Appendix B. Matrices R and G, and Vectors u1 and u2

The following solution approach was introduced in Choi et al. (2004), and used in
solving theM/PH/1 case inKim andKim (2015). The theoretical basis for this solution
approach is the following theorem (Theorem 2.15 and 2.16 in Gohberg et al. 1982).

Theorem B.1 (Gohberg et al. (1982)) Consider second order matrix differential equa-
tion

d2

dx2
u(x) + d

dx
u(x)B1 + u(x)B2 = 0, (54)

where u(x) is the row vector function to be found, and B1 and B2 are matrices. Suppose
that X1 and X2 are matrices that are solutions of the auxiliary equation

X2 + X B1 + B2 = 0. (55)
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If X1 and X2 have no common eigenvalues, then the general solution of Eq. (54) is
given by

u(x) = u1 exp{X1x} + u2 exp{X2x} (56)

where u1 and u2 are two constant vectors.

For our problem (15), we have
B1 = –(λI + Q⊗I + M⊗S(K, ms)) and
B2 = λQ⊗I + λM⊗(S(K, ms)+S−(K, ms)S+(K–1, ms) /λ).

Let X1 = λ(I – R) and X2= λG + Q⊗I + M⊗S(K, ms), where R and G are defined
in Sect. 3. It can be shown that the two matrices are solutions to Eq. (55). Then one
can use Eq. (56) to find a solution to Eq. (15), which satisfies all boundary conditions.
For that purpose, we need that exp{X1x} and exp{X2x} provides 2mems

K independent
solutions to (15). To ensure that, we need the following results.

Proposition B.2 If ρ �= 1, matrices λ(I – R) and λG + Q⊗I + M⊗S(K, ms) have no
common eigenvalues. If ρ = 1, matrices λ(I – R) and λG + Q⊗I + M⊗S(K, ms) have
one common eigenvalue zero with algebraic multiplicity one.

Proof First, we consider the case with ρ < 1. Since sp(R) = 1, it is clear that the real
parts of all eigenvalues of λ(I – R) are nonnegative. By Proposition 4.2, the maximal
real part of all eigenvalues of λG + Q⊗I + M⊗S(K, ms) is negative. Note that the
eigenvalue of λG + Q⊗I + M⊗S(K, ms) with the maximal real part has to be real.
Thus, the two matrices have no common eigenvalues.

If ρ > 1, we have sp(R) = sp(G) < 1. Then all eigenvalues of λ(I – R) have a
positive real part. On the other hand, by Proposition 4.2, all eigenvalues of λG +
Q⊗I + M⊗S(K, ms) have a nonpositive real part. Therefore, the two matrices have no
common eigenvalue.

If ρ = 1, zero is an eigenvalue of both λ(I – R) and λG + Q⊗I + M⊗S(K, ms).
Similar to Choi et al. (2004), it can be shown that the algebraic multiplicity of the two
matrices is one. This completes the proof of Proposition B.2. ��
By Proposition B.2, if ρ �= 1, it can be shown that Eq. (56) gives 2mems

K independent
solutions to (15). Then all we need to do is to find {u1, u2} for a solution to (10).
To do so, we use the function dpK +1(x)/dx, which can be found in two ways: using
Eqs. (10) and (16). Equalizing the resulted expressions at x = 0 and x = τ− leads to
the following linear system for {u1, u2}:

0 = u1eλ(R−I )τ
(

DK (I ⊗ S+(K − 1, ms))
1

λ
− R

)

+ u2

(
G − I + 1

λ
(Q ⊗ I + M ⊗ S(K , ms))

)

+ u2
1

λ

(
DK (I ⊗ S+(K − 1, ms))

) ;
0 = u1 (Q ⊗ I + M ⊗ S(K , ms) + λR)

+u2λe(λG+Q⊗I+M⊗S(K ,ms ))τ (I − G) . (57)
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Finally, we use the law of total probability to normalize {u1, u2}, i.e., ∑K
k=0 pke+∫ τ

0 pK+1(x)dxe = 1. By routine calculations, we obtain

K∑
k=0

pke = pK

⎛
⎝I +

K−1∑
k=0

⎛
⎝K−(k+1)∏

j=0

DK− j

⎞
⎠

⎞
⎠ e

= (u1 exp{λ(R − I )τ } + u2)
1

λ

⎛
⎝I +

K−1∑
k=0

⎛
⎝K−(k+1)∏

j=0

DK− j

⎞
⎠

⎞
⎠ e, (58)

and

∫ τ

0
pK+1(x)dx

= u1

∫ τ

0
e{λ(R−I )(τ−x)}dx + u2

∫ τ

0
λe(λG+Q⊗I+M⊗S(K ,ms ))xdx . (59)

Using properties given in Sect. 4, the integrals in Eq. (59) can be obtained.

Proposition B.3 We have, for ρ < 1,

∫ τ

0
exp{λ(R − I )(τ − x)}dx

= 1

λ

(
eλ(R−I )τ − I + λτξ(π ⊗ φ)

)
(R − I + ξ(π ⊗ φ))−1 ; (60)∫ τ

0
e(λG+Q⊗I+M⊗S(K ,ms ))x dx

=
(

e(λG+Q⊗I+M⊗S(K ,ms ))x − I
)

(λG + Q ⊗ I + M ⊗ S(K , ms))
−1 , (61)

for ρ > 1,

∫ τ

0
exp{λ(R − I )(τ − x)}dx = 1

λ

(
e(R−I )τ − I

)
(R − I )−1 ; (62)∫ τ

0
e(λG+Q⊗I+M⊗S(K ,ms ))x dx

=
(

e(λG+Q⊗I+M⊗S(K ,ms ))τ − I + τζ (π ⊗ φ)
)

× (λG + Q ⊗ I + M ⊗ S(K , ms+) + ζ (π ⊗ φ))−1 ,

(63)

and, for ρ = 1, Eqs. (60) and (63) hold.

Proof The proof is based on Propositions 4.3 and 4.4. Details are omitted.
By Proposition B.3, the linear system with (19), (20), and (21) for {u1, u2} is

obtained for the case with ρ �= 1.
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If ρ = 1, by Proposition B.2, (56) gives 2mems
K – 1 independent solutions to (15).

We need to find one more solution to (15). By Proposition 4.2, it is easy to verify that

v(x) = (π ⊗ φ)
(
λx I + (A0 − A2) (A0 + A1 + A2 + e⊗(π ⊗ φ))−1

)
(64)

is another independent solution to (15). Then the solution to (15) can be expressed as

u(x) = u1 exp{X1x} + u2 exp{X2x} + u3v(x), (65)

where u3 is a constant. Similar to the case with ρ �= 1, a linear system for {u1, u2, u3}
can be established by using two boundary conditions (i.e., conditions at x = 0 and
x = τ−) and the law of total probability. Once {u1, u2, u3} is obtained, a solution to
(15) can be obtained. Details are omitted.
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