Matrix-Analytic Methods - An
 Algorithmic Approach to Stochastic 2
 Modelling and Analysis

Qi-Ming He

Abstract

The field of matrix analytic methods (MAM) was pioneered by Dr. 5 Marcel F. Neuts in the middle of the 1970s for the study of queueing models. In the 6 past 40 years, the theory on MAM has been advanced in parallel with its applications 7 significantly.

Matrix-analytic methods contain a set of tools fundamental to the analysis of 9 a family of Markov processes rich in structure and of wide applicability. Matrix- 10 analytic methods are extensively used in science, engineering, and statistics for 11 the modelling, performance analysis, and design of computer systems, telecom- 12 munication networks, network protocols, manufacturing systems, supply chain 13 management systems, risk/insurance models, etc.

1 Introduction

The field of matrix analytic methods (MAM) was pioneered by Dr. Marcel F. Neuts 16 in the middle of the 1970s for the study of queueing models. In the past 40 years, 17 the theory on MAM has been advanced in parallel with its applications significantly 18 (See Neuts [20, 21], Latouche and Ramaswami [14], He [11]).

Matrix-analytic methods contain a set of tools fundamental to the analysis of 20 a family of Markov processes rich in structure and of wide applicability. Matrix- 21 analytic methods are extensively used in science, engineering, and statistics for 22 the modelling, performance analysis, and design of computer systems, telecom- 23 munication networks, network protocols, manufacturing systems, supply chain 24 management systems, risk/insurance models, etc.

[^0]The fundamental ideas of MAM are (i) The use of phase in stochastic modeling and 27 analysis; and (ii) The algorithmic approach to stochastic analysis. Based on the basic 28 ideas, a set of fundamental tools was introduced and developed in MAM: (1) Phase- 29 type (PH) distributions; (2) Markovian arrival processes (MAP); (3) Paradigms of 30 structured Markov processes (e.g., QBD, M/G/1, and GI/M/1 paradigms); and (4) 31 Markov modulated fluid flow (MMFF) processes.

1. PH-distributions were introduced by Marcel Neuts in 1975 as a generalization of 33 the exponential distribution for the study of queueing models. A PH-distribution 34 is defined as the probability distribution of the absorption time in a finite state 35 Markov chain. This class of distributions can approximate any distribution 36 with nonnegative support, which implies the wide scope of applications of 37 PH-distributions. This class of distributions possesses the partial memoryless 38 property, which leads to analytically and numerically tractable models for a 39 variety of stochastic systems. Applications of PH -distributions have gone far 40 beyond queueing theory to fields such as biology and statistics. See Neuts [18], 41 O'Cinneide [22], Buchholz et al. [6], He [11] for details and references.
2. MAPs were introduced by Marcel Neuts in 1979, as a generalization of the 43 Poisson process. An MAP is a counting process defined by counting marked 44 transitions in a finite state Markov chain. This class of counting processes 45 can approximate any stochastic counting process, which implies the wide 46 applicability of MAPs. Similar to PH-distributions, MAPs have a wide scope 47 of applications and lead to analytically and numerically tractable models for 48 stochastic systems. See Neuts [19], Asmussen and Koole [1], Buchholz et al. 49 [6], He [11] for details and references.

50
For both PH-distributions and MAPs, parameter estimation and fitting are fun- 51 damental to their applications. Moment matching and expectation-maximization 52 (EM) algorithms have been developed for that purpose. See Asmussen et al. [3] 53 and Buchholz et al. [6] for details and references. 54
3. The structured Markov processes of interest include the $Q B D, M / G / 1$, and 55 $G I / M / 1$ paradigms. The QBD processes are generalizations of the birth-and- 56 death process. Two fundamental matrices, R and G, with explicit probabilistic 57 interpretations are introduced. Using those matrices, matrix-geometric and 58 matrix-exponential solutions have been obtained for the transient and stationary 59 solutions of QBD processes. Numerically robust and efficient algorithms have 60 been developed for computing various quantities. The M/G/1 and GI/M/1 61 paradigms are generalizations of the QBD paradigm, and contain Markov 62 processes skip-free to either the left (down) or right (up). Similar to the 63 QBD case, matrix-geometric/exponential solutions have been found for those 64 generalizations. In addition, matrix-exponential models and Markov models with 65 a tree structure are introduced as further generalizations of those paradigms. See 66 Neuts [20, 21], Latouche [13], Latouche and Ramaswami [14], Sengupta [25], 67
4. MAM was used in the analysis of MMFFs in 1990's (Asmussen [2] and 69 Ramaswami [24]). MAM injected new ideas and solution approaches in the study 70 of MMFFs and their applications in queueing theory and risk analysis, which 71 lead to more efficient algorithms for computing quantities and extensions to 72 much more sophisticated models. While Markov chains, such as birth-and-death 73 processes, $\mathrm{QBD}, \mathrm{M} / \mathrm{G} / 1$, and $\mathrm{GI} / \mathrm{M} / 1$, can be used effectively in the analysis of 74 stochastic models with a relatively simple structure, MMFFs are an indispensable 75 tool for the investigation of some complicated systems. See Bean et al. [4], da 76 Silva Soares and Latouche [8], and Latouche and Nguyen [15] for more details 77 and references.

3 Applications

Since the 1970's, MAM has found applications in many areas.

1. MAM started from research in queueing theory. Today, MAM has been used 81 successfully in the investigation of a variety of queueing models, including but 82 not limited to retrial queues, vacation queues, queues with customer abandon- 83 ments, feedback queue, queues with server repairs, and multi-server queues. In 84 such studies, PH -distributions are usually used to model the service times, MAPs 85 are used to model the customer arrival processes, and (embedded) QBD, M/G/1, 86 and GI/M/1 types of Markov chains are used to describe the dynamics of the 87 stochastic systems at specifically selected epochs. Matrix-geometric or matrix- 88 exponential solutions are utilized for finding various queueing quantities of 89 interest. For most of those cases, quantities of queueing interest can be computed 90 efficiently. See Ramaswami [23], Neuts [20, 21], Lucantoni et al. [16], He [9], 91 Takine [26] Kroese et al. [12], Miyazawa and Zhao [17], and Xia et al. [27] for 92 details and references. 93
2. MAM found applications in reliability theory. PH-distributions can be used to 94 model the times to failure of components in a reliability system. MAPs can be 95 used to model the arrivals of events such as shock-waves. For many reliability 96 systems, the closure properties of PH-distributions and MAPs can be used to 97 obtain various system performance quantities such as system time to failure, 98 system availability, and system failure rate. 99
3. Due to its similarity to queueing systems, many inventory and supply chain 100 models can be analyzed by MAM. MAM can be used not only to analyze such 101 stochastic systems, but also to develop algorithms for computing the optimal 102 control policy. This expands MAM's application significantly. See Chen and 103 Song [7] and He [11] for details and references. 104
4. Risk and insurance analysis is another area where MAM finds ample appli- 105 cations, especially after MAM is applied to MMFFs. Similar to queueing 106 applications, MAM finds closed-form solutions for many classical risk models 107 and quantities. Algorithms have been developed for computing many quantities 108
efficiently. This is the most active area of research in MAM in the last decade. 109 See Asmussen [2] and Badescu and Landriault [5] for details and references. 110

4 Summary

Abstract

MAM has been proven to be a set of powerful tools in stochastic models in the past 40 years. The interest in MAM has been growing. While there is still potential for MAM to grow in its totality, some of its components such as PH -distributions and MAPs stand out independently as useful tools in many branches of science 115 and engineering. MAM, which takes advantages of the ever-increasing computing 116 power, will continue to find new applications in science and engineering (e.g., 11 machine/deep learning and artificial intelligence (AI)).

References

Scand. J. Stat. 23, 419-441 (1996)1254. Bean, N., OReilly, N., Taylor, P.: Algorithms for return probabilities for stochastic fluid flows 126
Stoch. Model. 21(1), 149-184 (2005) 127
5. Badescu, A.L., Landriault, D.: Applications of fluid flow matrix analytic methods in ruin 128
theory - a review. Serie A: Matemáticas de la Revista de la Real Academia de Ciencias Exactas, 129
Físicas y Naturales. 103(2), 353-372 (2009) 130
6. Buchholz, P., Kriege, J., Felko, I.: Input Modeling with Phase-Type Distributions and Markov 131
Models: Theory and Applications. Springer, New York (2014) 132
7. Chen, F., Song, J.S.: Optimal policies for multi-echelon inventory problems with Markov 133
modulated demand. Oper. Res. 49(2), 226-234 (2001) 134
8. da Silva Soares, A., Latouche, G.: Matrix-analytic methods for fluid queues with finite buffers. 135
Perform. Eval. 63, 295-314 (2006) 136
9. He, Q.M.: Queues with marked customers. Adv. Appl. Probab. 28, 567-587 (1996) 137
10. He, Q.M., Neuts, M.F.: Markov chains with marked transitions. Stoch. Process. Appl. 74(1), 138
37-52 (1998) 139
11. He, Q.M.: Fundamentals of matrix-analytic methods. Springer, New York (2014) 140
12. Kroese, D.P., Scheinhardt, W.R.W., Taylor, P.G.: Spectral properties of the tandem Jackson 141network, seen as a quasi-birth-and-death process. Ann. Appl. Probab. 14(4), 2057-2089 (2004) 142
13. Latouche, G.: A note on two matrices occurring in the solution of quasi-birth-and-death 143processes. Stoch. Model. 3(2), 251-257 (1987) 144
14. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Mod- 145
elling. SIAM, Philadelphia (1999) 146
15. Latouche, G., Nguyen, G.T.: Analysis of fluid flow models. Queueing Model. Serv. Manag. 147
1(2), 1-30 (2018) 148
16. Lucantoni, D.M., Choudhury, G.L., Whitt, W.: The transient BMAP/G/1 queue. Stoch. Model 149
10, 145-182 (1994) 150
17. Miyazawa, M., Zhao, Y.Q.: The stationary tail asymptotics in the GI/G/1 type queue with 151 countably many background states. J. Appl. Probab. 36(4), 1231-1251 (2004)152
18. Neuts, M.F.: Probability distributions of phase type. In: Liber Amicorum Prof. Emeritus H. 153
Florin, pp. 173-206. University of Louvain, Belgium (1975) 154
19. Neuts, M.F.: A versatile Markovian point process. J. Appl. Probab. 16, 764-779 (1979) 155
20. Neuts, M.F.: Matrix-geometric solutions in stochastic models: an algorithmic approach. The 156 Johns Hopkins University Press, Baltimore (1981) 157
21. Neuts, M.F.: Structured stochastic matrices of M/G/1 type and their applications. Marcel 158
Dekker, New York (1989) 159
22. O’Cinneide, C.A.: Characterization of phase-type distributions. Stoch. Model. 6(1), 1-57 160(1990)161
23. Ramaswami, V.: The N/G/1 queue and its detailed analysis. Adv. Appl. Probab. 12, 222-261 162(1980)163
24. Ramaswami, V.: Matrix analytic methods for stochastic fluid flows. In: Smith, D., Hey, P. 164
(eds.) Teletraffic Engineering in a Competitive World (Proceedings of the 16th International 165
Teletraffic Congress), pp. 1019-1030. Elsevier Science B.V, Edinburgh (1999) 166
25. Sengupta, B.: Markov processes whose steady state distribution is matrix-exponential with an 167
application to the GI/PH/1 queue. Adv. Appl. Probab. 21, 159-180 (1989) 168
26. Takine, T.: Queue length distribution in a FIFO single-server queue with multiple arrival 169
streams having different service time distributions. Queueing Syst. 39, 349-375 (2001) 170
27. Xia, L., He, Q.M., Alfa, A.S.: Optimal control of state-dependent service rates in a $M A P / M / 1$ 171
queue. IEEE Trans. Autom. Control. 62(10), 4965-4979 (2017) 172

AUTHOR QUERIES

AQ1. Please provide details for Asmussen and Bladt (1996) in reference list.
AQ2. Ref. [10] was not cited anywhere in the text. Please provide in text citation or delete the reference from the reference list.

[^0]: Q.-M. He (\square)

 University of Waterloo, Waterloo, ON, Canada
 e-mail: q7he@uwaterloo.ca

