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a b s t r a c t

We consider a multi-round prediction market in which two agents, Alice and Bob, are
trading on an event on which each may take action to influence its outcome. The existing
literature assumes that there is no net difference between the costs of different actions
the agents may take outside the prediction market when external incentives exist. For
example, the cost for Alice towork hard to complete the project is the same as it is for her to
‘‘loaf’’ and not work hard. In this work we consider first a two-round and later a four-round
setting inwhich the agents’ costs of external actions differ between actions.We show that a
predictionmarket is incentive-compatible when external action costs differ as long as they
remain within a proper range, regardless of the initial market estimate, something that is
not shown in the existing literature.
© 2018 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Background introduction

Prediction markets are created for the purpose of ag-
gregating information from individuals about uncertain
events of interest. For example, a prediction-market-like
mechanism is known topredict the financial value of soccer
players in transfermarkets better than other standard fore-
casting methods (Peeters, 2018). However, some decision
makers are suspicious about the use of prediction markets
in certain settings, such as corporate settings. In corporate
settings, many managers are concerned that workers may
have a greater incentive to take adverse actions within the
workplace when a prediction market is present than when
it is not. One public event in which external actions may
influence a traded event is an election. Depending on the
stakeswithin a predictionmarket, some votersmay change
their votes in order to maximize their total returns, both
within and outside the prediction market. However, the
preceding argument, though theoretically valid, has not yet
been shown to hold anymerit in practice. In fact, prediction
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markets are used extensively for eliciting and aggregating
opinions on political events (Graefe, Armstrong, Jones, &
Cuzán, 2014; Hanea et al., 2017; Rothschild, 2015). It is
generally assumed that though agents who participate in
prediction markets by trading may have superior informa-
tion about the relevant event, they have no direct control
over the event outcome (e.g., one individual vote is not
likely to sway an entire election). However, prediction
markets are often used in situations in which this assump-
tion is violated (Chakraborty & Das, 2016) (e.g., student
evaluations). This study considers the impact of external
incentives on the efficacy of prediction markets, especially
when it requires costly actions to act on external incen-
tives. the predictionmarkets that are deployed in corporate
settings consist of a market maker, a center with which
all participants, or agents, trade, that is present in order to
facilitate trade and boost themarket liquidity. In our study,
the market maker, who is also the market participants’
employer, does notwant agents to take undesirable actions
at work that may impact the outcome of the traded event.

There is substantial evidence that prediction markets
can help to produce forecasts of event outcomes that
have lower prediction errors than conventional forecasting
methods (Arrow et al., 2008). However, it is also possible
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that agents might bluff and deceive other players by not
revealing their true beliefs, hoping to correct the prediction
probability later and benefit in themarket as a result (Chen
et al., 2010; Dimitrov & Sami, 2008). In addition to bluff-
ing in order to maximize the prediction market payoff,
an agent may also change her behavior outside the pre-
diction market to maximize her reward both within and
outside the market. For example, employees might have
an incentives to ‘‘slack off’’ when working on a project just
because their predictionmarket position is favorable to the
project being delayed and they would somehow benefit
more in the prediction market by working less hard in
the workplace. This may seem like a far-fetched idea, but
not long ago the U.S. congress was worried that terrorists
might have a higher incentive to actually conduct terrorist
attacks if they could trade in a relevant prediction mar-
ket (Looney, 2004). Eventually, these proposed ‘‘terrorist
markets’’ were shut down by the U.S. congress due to these
concerns. There are additional canonical real-world exam-
ples which show that having agents trade in a prediction
market distorts their incentives both within and outside
the prediction market (Chakraborty & Das, 2014), such as
instructor prediction markets (Chakraborty, Das, Lavoie,
Magdon-Ismail, & Naamad, 2013). In fact, there is no ex
post way of determining how the presence of a prediction
market changes agents’ probability estimates,without con-
sidering the equilibrium strategies of agentswithin predic-
tion markets. In this study, we use equilibrium analysis to
see whether prediction markets may indeed cause deviant
agent behaviorwhen agents’ external actions to themarket
are costly.

In conducting an equilibrium analysis in the presence
of external incentives in prediction markets, we find that
when external actions have asymmetric costs (that is, one
action costs more or less than another), these asymmetries
may actually lead agents to behave truthfully. Specifically,
we determine the equilibrium strategies for two agents
in first a two-round and later a four-round setting, where
the agents trade in a prediction market with a final value
that is contingent on a traded event, on the likelihood of
which the same two agents have a direct impact. We prove
that equilibrium strategies lead participants to always take
desirable/undesirable actions in relation to the project
(work hard or ‘‘loaf’’) and be truthful when reporting in the
prediction market, just as they would have done had the
prediction market not existed. Our result is important in
the face of decision makers’ concerns regarding prediction
markets potentially inducing undesirable actions.

The remainder of this document is arranged as follows.
We introduce relatedwork in Section 2 and define our gen-
eral model in Section 3. We next show that when the cost
of exerting high effort is positive, agents do not work hard,
but are truthful in the prediction market (Section 4.2);
similarly, we show that when the cost of exerting high
effort is negative, agents work hard and are sill truthful in
the prediction market (Section 4.3). However, Section 4.4
then shows that when there is no cost for efforts, there is a
possibility that agents will not always work hard and will
not report truthfully in the prediction market. Section 4.5
extends our two-round setting to four rounds and proves
that our conclusion still holds. Section 5 discusses future
research directions and concludes the paper.

2. Literature review

A large proportion of the research onpredictionmarkets
and scoring rules, which forms a building block for the
prediction markets that we consider in our paper, does
not consider outside incentives. Brier (1950) defines the
quadratic scoring rule, assuming implicitly that agents
cannot influence the outcome of the predicted event
(tomorrow’s weather). Bickel (2007) compares three
commonly-used strictly proper scoring rules, namely the
quadratic, spherical and logarithmic scoring rules, and
shows that the logarithmic scoring rule is preferred when
one needs to account for non-linear utilities and rank
ordering. Merkle and Steyvers (2013) demonstrate that
different strictly proper scoring rules yield considerably
different rankings of forecasters based on their scoring rule
scores. However, we assume that agents interact in the
market scoring rule market proposed by Hanson (2002),
which is derived from the difference of sequential scor-
ing rules. Hanson’s market scoring rule (MSR) gives risk-
neutral and myopic agents an incentive to reveal their
probabilistic estimates truthfully by ensuring that truthful
reporting maximizes an agent’s expected payoffs; thus, it
is said to be incentive-compatible. Das (2008) implies that
marketmaking can serve as an effective trading strategy for
individual agents who do not possess superior information
but are willing to learn from prices. However, unlike Das
(2008), we consider MSR prediction markets in which
forward-looking agents may take costly external actions
outside the market in order to influence the likelihood of
the traded event (for example, not work hard or vote for
another candidate in an election). The agents in our setting
are informed and do not simply learn from the traded
prices.

It is generally assumed that the agents who participate
in a prediction market by trading may have superior infor-
mation about the traded event, but have no direct control
over the outcome, as was noted by Chakraborty and Das
(2016). They show that if an agent does not participate
in a prediction market, they behave truthfully outside the
prediction market, but that they may change their outside
actions as a function of their earlier prediction market
report. Chakraborty and Das consider a voting game in
which the voting actions have equal costs and voting occurs
after all agents have finished interacting in the prediction
market. Unlike Chakraborty and Das (2016), we consider
iterative interactions between agents’ outside actions, and
agents’ reports, within the prediction market. In addition
(and this is perhaps the most important difference), we
also assume an asymmetric cost of external actions; for
example, not voting is preferred to voting (in practice, there
may be effort involved in voting that is savedwhen not vot-
ing). Using the taxonomy of Chakraborty and Das (2016),
one can say our study considers both price manipulation
(altering the market price due to external rewards) and
outcome manipulation (altering external actions based on
market prices). As such, we now discuss both of these form
of prediction market manipulation.

Similarly to Chakraborty and Das (2016), many papers
assume that agents may influence the outcomes of events
traded in a prediction market, or have some other incen-
tive outside the prediction market (Chakraborty & Das,
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2014; Dimitrov & Sami, 2010; Huang & Shoham, 2014; Shi,
Conitzer, & Guo, 2009). Shi et al. (2009) indicate that one
potential downside of prediction markets is that they may
give agents an incentive to take undesirable actions, and
prove that there exist principle-aligned prediction mecha-
nisms that do not incentivize undesirable actions with an
‘over-payment result’. In particular, unlike this paper, Shi
et al. (2009) do not use a market scoring rule mechanism,
but instead use sequential scoring rules, and have a linear
subsidy (in the number of agents). Chakraborty and Das
(2014) give a two-round example to help us understand
when markets may be prone to manipulation due to dif-
ferent outside incentives, and howmuch the resulting pre-
diction probabilities can be trusted. However, again unlike
this paper, Chakraborty and Das (2014) do not consider
costly actions. Huang and Shoham (2014) assume profit-
indifferent manipulators and propose a modification of
market scoring rules in the form of trade limits, in order to
reduce the extent of the manipulation of prediction mar-
kets due to external incentives. However, the limitation
of trade amounts may also interfere with the elicitation
of agents’ true beliefs (depending on a market’s liquidity,
bounded budgets may lead to agents not revealing all of
their information in amarket), though this limitation is not
an issue here, as we do not bound agents’ budgets.

Chen, Gao, Goldstein, and Kash (2015) employ a two-
player market scoring rule setting in which a manipulator
with outside incentives trades first, followed by a truthful
trader. We likewise consider a two-player market setting,
but the two agents in our model are both strategic traders
with outside incentives. Unlike the papers cited above,
we show that when non-myopic agents’ expected payoffs
consist not only of payoffs from the prediction market,
but also of the costs of their related actions that decide
the outcome of the market, the quadratic scoring rule,
used as themarket rewardmechanism, incentivizes agents
to report truthfully in the prediction market and to take
action as if the prediction market was not present. We
realize that the claimsmade regarding our contribution are
very broad, and, as with any analytical result, there are var-
ious assumptions and inherent limitations regarding the
generalizability of the results. We discuss the limitations
and shortcomings of our results explicitly in Section 3, after
presenting our model. We then discuss the limitations of
our results further in Section 5. These discussions are pre-
sented not only to encourage researchers to consider these
limitationswhen decidingwhether to apply ourmodel and
results, but also to identify future research directions.

3. Model description

This section formally proposes and describes our set-
ting. We consider a company C , in which two employees,
who we will call Alice and Bob, are assigned to a time-
limited project E, which they are to complete together.
We consider each week from the beginning of this project
as a round, and the scheduled time for completing the
project is T weeks. As our model is designed for a multi-
round setting, the number of rounds should be equal to or
larger than two. In each round, Alice and Bob must decide
individually whether to give a high, later denoted 1, or

low, later denoted 0, effort to project E during each week.
After T rounds, Alice and Bob’s combined total efforts will
determine the project’s likelihood of success (e.g., meeting
its scheduled delivery date). The project E has a binary
outcome, as E either occurs or does not occur. If the project
succeeds by the end of T rounds, we say that E occurs;
if the project fails by the end of T rounds, we say that
E does not occur. At the end of each round, every high
effort will bring some payoff score (negative scores are
equivalent to net costs and positive scores to net rewards)
to the player who exerted this effort, while low efforts will
not bring any payoff score to the players.1 In our model,
effort is rewarded immediately after each round. This is
a simplifying assumption, and need not necessarily hold
in practice. In fact, in practice, a manager can tell if an
employee is not working hard over time, and for ease of
modeling, we assume this observation is immediate, but
may not be so in practice. If the reward is delayed, it is
discounted appropriately.

At the same time, in a prediction market, Alice and Bob
also trade in security F , the ultimate value of which is con-
tingent on the outcome of E.We assume that the prediction
market is a market scoring rule market, as we find is used
in practice.2 If there is no related prediction market in C ,
then employees will be inspired to always devote high/low
efforts to E in order to gain the maximal expected payoff.
However, when a predictionmarket contingent on E exists,
the employer may worry that employees will change their
effort levels in order to benefit more from the rewards
procured in the prediction market.

For each round i (i = 1, . . . , T ), Alice and Bob devote
efforts e(i)A and e(i)B to projecting E and report the prediction
probabilities in the predictionmarket as r (i)A and r (i)B , respec-
tively. When E occurs, a report of r (i)A earns Alice a net score
ρ
(i)
s (r (i)A ) = s(E, r (i)A )−s(E, r (i−1)

B ), where s is a proper scoring
rule; when E does not occur, the report earns Alice a net
score ρ

(i)
f (r (i)A ) = s(E, r (i)A )− s(E, r (i−1)

B ) instead (ρ(i)
s (r (i)B ) and

ρ
(i)
f (r (i)B ) are defined similarly). Note that r (i)A = 1 − r (i)A . In

the remainder of this paper, we will define w = 1 − w
analogously for any variablew. In addition, s(·) is said to be
a proper scoring rule if, for a risk-neutral agent with belief
p and report r on an event,
d
dr

(ps(r) + ps(r))
⏐⏐
r=p = 0, (1)

and
d2

dr2
(ps(r) + ps(r)) ≤ 0. (2)

When an agent’s score-maximizing report is equal to
her true belief, a proper scoring rule, and in turn a market

1 Payoff scores need not be linear in effort, and the constant α is used
to convert the functional form of effort into payoff scores, in order for
them to be compared with the scores earned in the prediction market.
When the payoff score is negative, high efforts bring net costs to agents;
when it is positive, high efforts bring net rewards to agents. The total
scores earned fromexerting efforts and reporting in the predictionmarket
could be converted into financial costs or rewards that will be given to the
agents.

2 See the website of PredictIt: https://www.predictit.org/About/
HowItWorks.

https://www.predictit.org/About/HowItWorks
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Fig. 1. Model dynamics timeline.

scoring rule, is said to be incentive-compatible. Here, we
assume that Alice (Bob) assumes that the other player is
myopic when she (he) sees his (her) previous prediction in
the market. We also use νA (0 < νA < 1) to describe Alice’s
impact on the likelihood of success of project E. We denote
by h(i)

A (h(i)
B ) the accumulated number of high efforts exerted

by Alice (Bob) by the end of round i. p(i)A (p(i)B ) is the belief
regarding the likelihood of E occurring that is held by Alice
(Bob) in round i before she (he) takes any actions in round
i. π (i)

A (π (i)
B ) is the payoff earned between the current round,

i, and the final round T by Alice (Bob) by exerting effort
towards E and making reports in the prediction market
in all rounds i to T . I (i)A (I (i)B ) is the system state that Alice
(Bob) has formed in round i after she (he) observes themost
recent prediction probability but before she (he) takes any
actions in round i. E

[
π

(i)
A (I (i)A , a(i)A )

]
(E
[
π

(i)
B (I (i)B , a(i)B )

]
) is the

expected payoff given the current system state I (i)A (I (i)B ) and
the action set a(i)A (a(i)B ) that Alice (Bob) would take in round

i; while E
[
π

(i)∗
A (I (i)A )

]
(E
[
π

(i)∗
B (I (i)B )

]
) is the corresponding

maximal expected payoff score for a given state I (i)A (I (i)B ) for
Alice (Bob). a(i)∗A = (e(i)∗A , r (i)∗A ) (a(i)∗B = (e(i)∗B , r (i)∗B )) is the
optimal action set that Alice (Bob) takes in round i in order
to receive E

[
π

(i)∗
A (I (i)A )

]
(E
[
π

(i)∗
B (I (i)B )

]
).

Fig. 1 shows the dynamics of our model. We assume
that in each round Alice first determines her effort level,
e(i)A , then makes a report in the prediction market, r (i)A ;
next, Bob determines the effort level he will exert in this
round, e(i)B ; finally, the round concludes by Bob reporting in
the prediction market, r (i)B . In practice, during each round,
each agent determines her (his) effort level and reported
belief for this round simultaneously, though the actions
exerted towards the project and the belief reported in the
prediction market are conducted sequentially. Alice’s and
Bob’s reports in the prediction market are always common
knowledge to both agents in all cases. However, their effort
levels are not common knowledge.

Given that in each round, two risk-neutral forward-
looking agents are maximizing their expected profits from
the current round to the end of the project horizon, T ,
we can write down the Bellman equation for determining
the payoff for each round, for each agent. However, before
writing down the equations for each round, we first define
the payoff that each agent will receive in each round. In
round i, Alice (Bob) will receive ρ

(i)
e (e(i)A ) (ρ(i)

e (e(i)B )) from
devoting effort e(i)A (e(i)B ) to the project, and will receive

p(i)A ·ρ
(i)
s (r (i)A )+p(i)A ·ρ

(i)
f (r (i)A ) (p(i)A ·ρ

(i)
s (r (i)B )+p(i)B ·ρ

(i)
f (r (i)B )) from

reporting probability estimate r (i)A (r (i)B ) in the prediction
market. As was mentioned earlier, the value of the payoff
function of effort exerted, ρ

(i)
e (e(i)A ) (ρ(i)

e (e(i)B )), is negative

when high efforts bring net costs, and positive when high
efforts bring net rewards. Our model assumes that the
likelihood of E occurring is determined by the total number
of high efforts over all rounds, weighted by each agent’s
impact on determining the likelihood of E:

1
T

[
νA

T∑
n=1

e(n)A + (1 − νA)
T∑

n=1

e(n)B

]
. (3)

Before Alice takes any actions in round i, the number
of accumulated high efforts exerted by her by the end of
round i − 1 (h(i−1)

A ) is known to herself, but the number
of accumulated high efforts exerted by Bob by the end of
round i−1 (h(i−1)

B ) is not observed by her directly. However,∑T
n=i+1ẽ

(n)
A and

∑T
n=iẽ

(n)
B are all future efforts, and e(i)A is

the effort-level decision she needs to make in the current
round, i. ForBob, the situationbefore he takes any actions in
round i is slightly different. Because Alice has already taken
her actions in this round, the total number of high efforts
exerted by her is h(i)

A instead. To be more specific, we can
write down the definitions of p(i)A and p(i)B as:

p(i)A =
1
T

[
νA

(
h(i−1)
A + e(i)A +

T∑
n=i+1

ẽ(n)A

)

+ (1 − νA)

(
h(i−1)
B +

T∑
n=i

ẽ(n)B

)]
, (4a)

p(i)B =
1
T

[
νA

(
h(i)
A +

T∑
n=i+1

ẽ(n)A

)

+ (1 − νA)

(
h(i−1)
B + e(i)B +

T∑
n=i+1

ẽ(n)B

)]
. (4b)

Eq. (4a) shows the formal definition of p(i)A to be the total
efforts of Alice, past and future, h(i−1)

A + e(i)A +
∑T

n=i+1ẽ
(n)
A ,

plus the total efforts of Bob, past and future, h(i−1)
B +∑T

n=iẽ
(n)
B , all weighted by νA. From Alice’s perspective, she

knows her past effort levels, and thus h(i−1)
A is known and is

some natural number between 0 and i−1. Similarly, as we
will see in our analysis, Alice may infer Bob’s effort levels
from his reports in the prediction market, and again h(i−1)

B
is known toAlice. The ẽ(n)A and ẽ(n)B effort values, for n ≥ i+1,
are not necessarily binary, but instead are real numbers
over [0, 1], to account for the fact that Alice’s and Bob’s
equilibrium effort strategies are mixed. As effort levels
are not common knowledge, we need to define how each
agent interprets the reportedprobability of the other agent.
One way of interpreting reported probabilities is to use
Bayesian updating, given current prior beliefs. However, as
the probability of E depends not only on market estimates,
but also on current and future effort levels, defining the
Bayesian updating policy is quite convoluted. To simplify
our analysis, we define rB(A)(i) as Bob’s estimate of the
likelihood of E up to and including round i after observing
Alice’s last report. However, when Alice makes the report
in round i, Bob has not yet taken actions in this round, so
the expectation of his effort value of round i as perceived



C. Di, S. Dimitrov and Q.-M. He / International Journal of Forecasting 35 (2019) 351–370 355

by Alice is denoted as EA

[
ẽ(i)B
]
. Similarly, we define rA(B)(i)

as Alice’s estimate of the likelihood of E’s occurring up to
and including round i after observing Bob’s last report. We
define the two notations formally as:

rB(A)(i) =
1
i

[
νAh

(i)
A + (1 − νA)

(
h(i−1)
B + EA(ẽ

(i)
B )
)]

, (5a)

rA(B)(i) =
1
i

[
νAh

(i)
A + (1 − νA)h

(i)
B

]
. (5b)

Here, we assume that at the beginning of round i, Alice
has no information that she can use to predict Bob’s effort
level for this round, which implies EA(ẽ

(i)
B ) = 0.5 for any

round i. Then, the notations of rB(A)(i) and rA(B)(i) can be
defined further as:

rB(A)(i) =
1
i

[
νAh

(i)
A + (1 − νA)(h

(i−1)
B + 0.5)

]
, (6a)

rA(B)(i) =
1
i

[
νAh

(i)
A + (1 − νA)h

(i)
B

]
. (6b)

Note that rB(A)(i) = r (i)A and rA(B)(i) = r (i−1)
B , as we are

simply presenting how each of the agents interprets the
other agent’s observed prediction market probabilities. In
Eq. (4a), Alice’s number of previous high efforts, h(i−1)

A , is
known to herself, while the number of Bob’s previous high
efforts, h(i−1)

B , could not be observed directly but could be
inferred using his last prediction probability r (i−1)

B as

h(i−1)
B =

(i − 1) · r (i−1)
B − νAh

(i−1)
A

1 − νA
.

For Eq. (4b), the unobservable number of previous high
efforts exerted by Alice could likewise be inferred using r (i)A
as

h(i)
A =

ir (i)A − (1 − νA)(h
(i−1)
B + 0.5)

νA
.

By inserting the expressions of h(i−1)
B and h(i)

A into Eqs. (4a)
and (4b) separately, we can get a further expression of the
agents’ beliefs regarding the likelihood of E’s occurrence
during any round i as:

p(i)A =
1
T

[
(i − 1)r (i−1)

B + νA

(
e(i)A +

T∑
n=i+1

ẽ(n)A

)

+ (1 − νA)
T∑

n=i

ẽ(n)B

]
, (7a)

p(i)B =
1
T

[
ir (i)A + νA

T∑
n=i+1

ẽ(n)A + (1 − νA)

×

(
e(i)B +

T∑
n=i+1

ẽ(n)B − 0.5

)]
. (7b)

With the payoff scores being collected in each round,
each agent maximizes the current round’s payoff scores

plus the discounted future rounds’ payoff scores.

E
[
π

(i)∗
A (I (i)A )

]
= max

(e(i)A ,r(i)A )
{ δE[π

(i+1)∗
A ]  

discounted future payoff

+ ρ(i)
e (e(i)A )  

effort payoff

+ p(i)A ρ(i)
s (r (i)A ) + p(i)A ρ

(i)
f (r (i)A )  

prediction market payoff

},

E
[
π

(i)∗
B (I (i)B )

]
= max

(e(i)B ,r(i)B )

{
δE
[
π

(i+1)∗
B

]
+ ρ(i)

e (e(i)B )

+ p(i)B ρ(i)
s (r (i)B ) + p(i)B ρ

(i)
f (r (i)B )

}
.

(8)

3.1. Applicability of the developed model

Before moving to determining agents’ equilibrium de-
cisions in various settings, we will discuss the applicability
of the developed model. Recall that our paper is motivated
by the fact that prediction market agents who are par-
ticipating in a market at work are paid for ‘‘doing their
job’’, e.g., exerting a high effort at work. As agents receive
compensation for exerting a high effort, accounting for this
compensation when determining an agent’s equilibrium
actions in a predictionmarket is necessary, and the purpose
of this paper. However, as withmost analytical work, there
are shortcomings not only with our model, which we will
nowdiscuss, but in turnwith the conclusions, aswe discuss
in Section 5.

One clear shortcomingwith the developedmodel is that
it considers only two agents trading on a binary event (E
either occurs or does not occur). As has been noted in
other research on prediction markets, results that hold for
binary events do not always map to the n-nary outcome
space (Karimi & Dimitrov, 2018). The reason why binary
events behave differently is that, for them, a given change
in one report is equivalent to a change in the opposite
direction in the other report.With three ormore outcomes,
a change in one report does not necessarily imply an equal
and opposite change in any other one report, but instead
changes in the aggregate of multiple other reports.

Another clear shortcoming of the developed model is
the agents. The agents are risk-neutral, something that is
known not to be the case in practice (Carlsson, Daruvala,
& Johansson-Stenman, 2005; Holt & Laury, 2002; Rosati
& Hare, 2016). It is not clear how/whether risk attitudes
impact agents’ actions when they are exposed to external
incentives. There is still scant research in risk-aversion in
prediction markets without external incentives (Dimitrov,
Sami, & Epelman, 2015; Karimi &Dimitrov, 2018; Ottaviani
& Sørensen, 2007), and none that we are aware of on risk-
aversion in the presence of external incentives. In addition
to risk-neutral agents, we also assume that agents are
homogeneous, in that they both receive either a positive
or a negative cost for exerting high effort. In practice,
the relative magnitudes of agents’ costs may impact their
actions, especially when they have different signs.

The final significant shortcoming of our presented
model is the stylized learning model for agents. The learn-
ing model allows us to have a tractable model, but results
in agents not accounting for all of the other agent’s future
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actions. Thismay not happen in practice, andmay skewour
results.

Even with all of the above shortcomings, we think that
the work presented in this paper is a necessary first step in
further addressing external incentives in prediction mar-
kets. It is clear that agentswhoparticipate in corporate pre-
diction markets are paid for taking certain external actions
while being penalized for taking others. If this situation
is not considered and modeled, then managers may still
believe that using prediction markets within a workplace
is a bad idea.While wemakemultiple simplifying assump-
tions that lead to shortcomings in ourmodel, the results, as
we will soon see, show that the cost of acting on external
incentives may restore incentive-compatibility in predic-
tion markets. The results are promising, and future work,
in addition to addressing the shortcoming outlined above,
would do well to consider field or laboratory experiments
for verifying whether costly actions do actually restore
incentive-compatibility in prediction markets.

In the remainder of this paper, we will determine the

values of E
[
π

(i)∗
A (I (i)A )

]
and E

[
π

(i)∗
B (I (i)B )

]
and the equilib-

rium strategies of both agents.

4. Results and analysis

This section begins by introducing one of themost com-
monly used scoring rules, the quadratic scoring rule, that
will be used in all of the following cases. We then provide
a mathematical analysis of cases 1 (high efforts bring a net
cost to agents), 2 (high efforts bring a net reward instead),
and 3 (external incentives do not exist). We assume T = 2
for the first three cases, but discuss results for T = 4 in
case 4.

We show here that, with external incentives (net payoff
scores are given to exerted efforts), the quadratic scoring
applied in the prediction market is incentive-compatible
(agents will report truthfully in the prediction market).
In fact, we prove that, in a two-round setting, agents will
not take desirable actions (always exert high efforts) when
high efforts bring net costs in case 1, but will take desirable
actions (always exert high efforts) when high efforts bring
net rewards in case 2. When external incentives exist,
agents will behave as if the prediction market was not
present, which indicates that the prediction market will
not change agents’ incentives outside the market. How-
ever, when external incentives do not exist, case 3 proves
that agents have incentives to bluff (report untruthfully)
in the prediction market when they are forward-looking.
This result is aligned with the conclusions from previous
work (Chen et al., 2010; Dimitrov & Sami, 2008). Finally,
case 4 recreates case 2 in the four-round setting.

4.1. Application of the quadratic scoring rule

This section uses a popular scoring rules, the quadratic
scoring rule, as the reward mechanism in the prediction
market. As we consider extreme reports in our results,
agents report probability estimates of 0 or 1; thus, we
cannot use other, perhapsmore popular, scoring rules, such

as the logarithmic scoring rule. Then, s(E, r), introduced in
Section 3, is defined as:

s(E, r) = 2r − r2 − r2 = −2r2 + 4r − 1

s(E, r) = 2r − r2 − r2 = −2r2 + 1.
(9)

s(E, r) is a proper scoring rule because Eqs. (1) and (2)
are satisfied.We have already defined the scores earned by
reporting in the prediction market in Section 3 as:

ρs

(
r (i)A

)
= s

(
E, r (i)A

)
− s

(
E, r (i−1)

B

)
ρf

(
r (i)A
)

= s
(
E, r (i)A

)
− s

(
E, r (i−1)

B

)
ρs

(
r (i)B

)
= s

(
E, r (i)B

)
− s

(
E, r (i)A

)
ρf

(
r (i)B
)

= s
(
E, r (i)B

)
− s

(
E, r (i)A

)
.

(10)

Using s(E, r) defined in Eq. (9), we can further write the
scores as:

ρs

(
r (i)A

)
= 4r (i)A − 2

(
r (i)A

)2
− 4r (i−1)

B + 2
(
r (i−1)
B

)2
ρf

(
r (i)A
)

= −2
(
r (i)A

)2
+ 2

(
r (i−1)
B

)2
ρs

(
r (i)B

)
= 4r (i)B − 2

(
r (i)B

)2
− 4r (i)A + 2

(
r (i)A

)2
ρf

(
r (i)B
)

= −2
(
r (i)B

)2
+ 2

(
r (i)A

)2
.

(11)

4.2. Case 1: High efforts bring net costs to agents

Case 1 assumes that the two agents’ efforts together
decide the outcome of E and the ultimate value of security
F , but that high efforts will bring net costs to the agents
who exert them. In this setting, we assume the payoff
function of exerted efforts to be ρe(e) = −αe2 (α > 0):

ρe

(
e(i)A
)

= −α

(
e(i)A
)2

, (12a)

ρe

(
e(i)B
)

= −α

(
e(i)B
)2

. (12b)

Here,weuse the definition ofAlice’s (Bob’s) belief on the
likelihood of E’s final occurrence in each round whenmax-
imizing her (his) expected total payoff from Section 3, and
apply the quadratic scoring rule introduced in Section 4.1.
We know from Eqs. (12), (7) and (11) that I (i)A = r (i−1)

B

and I (i)B = r (i)A when deciding the values of E
[
π

(i)∗
A (I (i)A )

]
and E

[
π

(i)∗
B (I (i)B )

]
, respectively. After inserting the payoff

functions of exerted efforts (Eq. (12)), the belief on the like-
lihood of E’s occurring (Eq. (7)), and the payoff functions
in the prediction market (Eq. (11)) into the maximization
equations (Eq. (8)) from the first round to the final round,
we get the following maximization equations for Alice and
Bob separately when T = 2.

For agent Alice, based on Eqs. (7), (8), and (11), we
obtain

E
[
π

(1)∗
A (r (0)B )

]
= max

(e(1)A ,r(1)A )

{
δE
[
π

(2)∗
A (r̃ (1)B )

]
− α

(
e(1)A

)2
(13a)
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+ 2

(
νA

(
e(1)A + ẽ(2)A

)
+ (1 − νA)

×

2∑
n=1

ẽ(n)B

)(
r (1)A − r (0)B

)
+ 2

((
r (0)B

)2
−

(
r (1)A

)2)}
,

E
[
π

(2)∗
A (r (1)B )

]
= max

(e(2)A ,r(2)A )

{
−α

(
e(2)A

)2
(13b)

+ 2
(
r (1)B + νAe

(2)
A + (1 − νA)ẽ

(2)
B

)
×

(
r (2)A − r (1)B

)
+ 2

((
r (1)B

)2
−

(
r (2)A

)2)}
.

Similarly, for agent Bob, we obtain

E
[
π

(1)∗
B (r (1)A )

]
= max

(e(1)B ,r(1)B )

{
δE
[
π

(2)∗
B (r̃ (2)A )

]
− α

(
e(1)B

)2
(14a)

+ 2
(
r (1)A + νAẽ

(2)
A

+ (1 − νA)(e
(1)
B + ẽ(2)B − 0.5)

)
×

(
r (1)B − r (1)A

)
+ 2

((
r (1)A

)2
−

(
r (1)B

)2)}
,

E
[
π

(2)∗
B (r (2)A )

]
= max

(e(2)B ,r(2)B )

{
−α

(
e(2)B

)2
(14b)

+ 2
(
2r (2)A + (1 − νA)(e

(2)
B − 0.5)

)
×

(
r (2)B − r (2)A

)
+2

((
r (2)A

)2
−

(
r (2)B

)2)}
.

We know from the timeline that Alice is the first agent
to take action in round 1. Although for Alice in round 1,
r̃ (1)B , ẽ(2)A , ẽ(1)B and ẽ(2)B are values for future actions that are
not yet known to Alice, the values could be inferred by her,
since our model assumes agents to be rational, forward-
looking and strategic. To be more specific, Alice can play
the whole game in her mind, knowing that, in any round,
both agents want to maximize the expected scores earned
between the current round and the final round; she can
then infer future optimal actions after exerting effort e(1)A
and making report r (1)A in round 1. Following this logic, we
can use backwards induction to solve this problem, i.e., to
determine the values of Eqs. (13) and (14).

Define f (i)B (f (i)A ) as the function of Bob’s (Alice’s) expected
payoff score earned from the current round i, and f (i)∗B
(f (i)∗A ) as the corresponding optimal function value. First,we
consider agent Bob in round 2. For a given r (2)A from Alice in
the second round (which is known to Bob), if Bob’s action is

a(2)B = (e(2)B , r (2)B ), then we have f (2)B = E
[
π

(2)
B (r (2)A , a(2)B )

]
as:

f (2)B = −α

(
e(2)B

)2
− 2

(
r (2)B

)2
+ 2

(
r (2)A

)2
+ 2

(
(1 − νA)(e

(2)
B − 0.5) + 2r (2)A

)(
r (2)B − r (2)A

)
.

(15)

We find Bob’s optimal action a(2)∗B = (e(2)∗B , r (2)∗B ) that
maximizes f (2)B , in the feasible region 0 ≤ e(2)B , r (2)B ≤ 1, by
first finding all of the feasible Karush-Kuhn–Tucker (KKT)
points of f (2)B , then finding the optimal solution.

Lemma 1. Assume that α >
(1−νA)2

2 . Then, f (2)B has one
feasible KKT point:

(e(2)B , r (2)B ) =

⎧⎨⎩(0, 0) if r (2)A ≤ (1 − νA)/4

(0, r (2)A − (1 − νA)/4) if r (2)A > (1 − νA)/4,

or, equivalently, we can write (e(2)B , r (2)B ) = (0,max{0, r (2)A −
1
4 (1 − νA)}).

Proof. For notational convenience, in this proof, we let
x = e(2)B and y = r (2)B . The equations for the KKT points can
be derived based on the function f (2)B and the constraints
0 ≤ x, y ≤ 1, which can be written explicitly as four
inequalities: −x ≤ 0, x − 1 ≤ 0, −y ≤ 0, and y − 1 ≤ 0.
Correspondingly, four Lagrangian multipliers µ1, µ2, µ3,
andµ4 are defined. By Eq. (4a) and routine calculations, the
equations for the KKT points are:

−2αx + 2y(1 − νA) − 2r (2)A (1 − νA) + µ1 − µ2 = 0;

− 4y + 2x(1 − νA) + 2
(
2r (2)A − 0.5(1 − νA)

)
+ µ3 − µ4 = 0;

xµ1 = (x − 1)µ2 = yµ3 = (y − 1)µ4 = 0;
0 ≤ x ≤ 1, 0 ≤ y ≤ 1; µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0, µ4 ≥ 0.

(16)

To find all of the KKT points, we must consider the follow-
ing nine cases: (i) x = y = 0; (ii) x = 1 and y = 0; (iii)
x = 0 and y = 1; (iv) x = y = 1; (v) 0 < x < 1 and y = 0;
(vi) 0 < x < 1 and y = 1; (vii) x = 0 and 0 < y < 1;
(viii) x = 1 and 0 < y < 1; and (ix) 0 < x, y < 1.
For each case, we find {x, y, µ1, µ2, µ3, µ4} satisfying the
above equations. In the end, only cases (i) and (vii) give
feasible KKT points. The results are presented in Table 1,
with the last columndisplaying reasons forwhy some cases
do not have KKT points. We also note that the function f (2)B
is not given for non-feasible KKT points in Table 1, since it
is not used. Details are omitted. □

We note that it is reasonable to assume α >
(1−νA)2

2 .
As νA is likely to be some value around 1

2 , assuming that
Alice and Bob have new equal attribution to the project, the
amount paid for the effort is greater than 1

8 per round.
For the casewith r (2)A ⩾ 1

4 (1−νA), we have the following
results.

Lemma 2. If α >
(1−νA)2

2 and r (2)A ⩾ 1
4 (1 − νA), then

(e(2)∗B , r (2)∗B ) = (0, r (2)A −
1
4 (1 − νA)) and E[π

(2)∗
B (r (2)A )] =

1
8 (1 − νA)2.

Proof. The proof is similar to that of Lemma1. If 1
4 (1−νA) ⩽

r (2)A , we find by comparing the values of f (2)B of feasible KKT
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Table 1
KKT points of f (2)B for case 1.

Case (e(2)B , r (2)B ) f (2)B KKT or not

(i) (0, 0) (1 − νA − 2r (2)A )r (2)A Feasible KKT if r (2)A ≤
(1−νA)

4

(ii) (1, 0) −α − 2(r (2)A )2 − (1 − νA)r
(2)
A < 0 Not KKT (µ3 < 0)

(iii) (0, 1) −(1 − r (2)A )(3 − 2r (2)A − νA) < 0 Not KKT (µ4 < 0)

(iv) (1, 1) (1 − r (2)A )(2r (2)A − 1 − νA) − α < 0 Not KKT (νA ≥ 1)

(v) (− 1
α
r (2)A (1 − νA), 0) – Not feasible KKT (x < 0)

(vi) ( 1
α
(1 − r (2)A )(1 − νA), 1) −(1 − r (2)A )2

(
2 −

(1−νA)2

α
+

1−νA

1−r(2)A

)
< 0 Not KKT (µ4 < 0)

(vii) (0, r (2)A −
1
4 (1 − νA)) 1

8 (1 − νA)2 KKT if r (2)A ≥
(1−νA)

4

(viii) (1, r (2)A +
1
4 (1 − νA)) −α +

1
8 (1 − νA)2 < 0 Not KKT (µ2 < 0)

(ix)
e(2)B =

4r(2)A − r(2)A (1 − νA)2 − (1 − νA)

2α − (1 − νA)2
,

r(2)B =
α(1 − νA) − 2r(2)A (1 − νA)2 − 4αr(2)A

4α − 2(1 − νA)2

–
Not feasible KKT

(x < 0 if r(2)A < (1 − νA)/4;

y < 0 if r(2)A > (1 − νA)/4)

points in Table 1 that f (2)∗B is obtained as f (2)∗B =
1
8 (1− νA)2

when (e(2)∗B , r (2)∗B ) = (0, r (2)A −
1
4 (1 − νA)). So Lemma 2 is

true. □

Based on Lemmas 1 and 2, we now find the optimal
action for Bob in the second round.

Theorem 1. If high efforts bring net costs and α >
(1−νA)2

2 ,
then

(e(2)∗B , r (2)∗B ) =

⎧⎪⎨⎪⎩
(0, 0), if r (2)A ⩽

1
4
(1 − νA);

(0, r (2)A −
1
4
(1 − νA)), if r (2)A ⩾

1
4
(1 − νA),

f (2)∗B =

⎧⎪⎨⎪⎩
−2(r (2)A )2 + (1 − νA)r

(2)
A , if 0 ⩽ r (2)A ⩽

1
4
(1 − νA);

1
8
(1 − νA)2, if

1
4
(1 − νA) ⩽ r (2)A ⩽ 1.

Proof. First, we show that the function f (2)B is concave in
(e(2)B , r (2)B ). By routine calculations, we obtain the Hessian
matrix of f (2)B as:

∇
2f (2)B (e(2)B , r (2)B ) =

⎡⎢⎢⎢⎢⎣
∂2f (2)B

∂(e(2)B )2
∂2f (2)B

∂e(2)B ∂r (2)B

∂2f (2)B

∂r (2)B ∂e(2)B

∂2f (2)B

∂(r (2)B )2

⎤⎥⎥⎥⎥⎦
=

[
− 2α 2(1 − νA)
2(1 − νA) −4

]
.

Since the sum of the diagonal elements of the Hessian ma-
trix is negative (i.e., −2α − 4 < 0) and the determinant of
the Hessianmatrix is positive (i.e., 8α−4(1−νA)2 > 0), the
two eigenvalues of the Hessian matrix must have the same
sign, which has to be negative. Thus, the Hessian matrix is
strictly negative definite, and therefore, the function f (2)B
is concave. Then, the optimal solution has to be the KKT
point thatmaximizes f (2)B or a boundarypoint of the feasible
region. We find the optimal solution by considering two
cases, each with a unique KKT point.

If r (2)A ≤ (1 − νA)/4, there is only one feasible KKT
point: (0, 0). Although there is no other feasible KKT point
to be considered for optimality, we also have to compare
f (2)B (0, 0) with all of the other feasible boundary solutions
listed in Table 1. By routine calculations, it can be verified
that either the other solutions are infeasible or their f (2)B is
smaller than that of (0, 0). Therefore, (0, 0) is the optimal
solution for this case.

If r (2)A > (1−νA)/4, there is only one KKT point: (0, r
(2)
A −

(1−νA)/4). Similarly to the above case, it can be shown that
(0, r (2)A − (1 − νA)/4) is the optimal solution for this case.

The corresponding f (2)∗B can be calculated accordingly,
and is given in Table 1. □

Now,we consider Alice’s expected payoff score in round
i = 2. We know from Theorem 1 that e(2)∗B = 0, regardless
of the value of r (2)A . After inserting ẽ(2)B = e(2)∗B = 0 into the
expression f (2)A = E[π

(2)
A , r (1)B , a(2)A ], where a(2)A = (e(2)A , r (2)A ),

we obtain:

f (2)A = −α

(
e(2)A

)2
+ 2

(
r (1)B + νAe

(2)
A

)(
r (2)A − r (1)B

)
+ 2

((
r (1)B

)2
−

(
r (2)A

)2)
.

Lemma 3. Assume that α >
ν2A
2 . Then, f (2)A has a unique

feasible KKT point (0, 1
2 r

(1)
B ).

Proof. The proof is similar to that of Lemma 1. The system
of equations used in the proof is as follows (note that x =

e(2)A and y = r (2)A ):

−2αx + 2νA(y − r (1)B ) + µ1 − µ2 = 0;
− 4y + 2(r (1)B + νAx) + µ3 − µ4 = 0;
xµ1 = (x − 1)µ2 = yµ3 = (y − 1)µ4 = 0;
0 ≤ x ≤ 1, 0 ≤ y ≤ 1; µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0,
µ4 ≥ 0.

We find all of the feasible KKT points from all of the po-
tential KKT points, which results in only one feasible KKT
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Table 2
KKT points of f (2)A in case 1.

Cases (e(2)A , r (2)A ) f (2)A KKT or not

(i) (0, 0) 0 Not KKT (µ3 < 0)

(ii) (1, 0) −2νAr
(1)
B − α < 0 Not KKT (µ2 < 0)

(iii) (0, 1) −(1 − r (1)B )2 < 0 Not KKT (µ1 < 0)

(iv) (1, 1) 2(1 − νA)(r
(1)
B − 1) − α < 0 Not KKT (µ4 < 0)

(v) (− νAr
(1)
B

α
, 0) – Not feasible KKT (e(2)A < 0)

(vi) ( νA(1−r(1)B )
α

, 1) 2(r (1)B − 1) +
ν2A (r

(1)
B −1)2

α
< 0 Not KKT (µ4 < 0)

(vii) (0, 1
2 r

(1)
B ) 1

2 (r
(1)
B )2 Feasible KKT

(viii) (1, 1
2 (r

(1)
B + νA)) −α +

1
2 ν2

A − r (1)B νA +
1
2 (r

(1)
B )2 Not KKT (µ2 < 0)

(ix)
e(2)A =

r(1)B (νA − 2)

2α − ν2A
< 0

r(2)A =
r(1)B (α − ν2A )

2α − ν2A

– Not feasible KKT (e(2)A < 0)

point. The results are shown in Table 2, but details are
omitted. □

In Lemma 3 we introduce an additional bound with
α >

ν2A
2 . As νA ∈ (0, 1), we know that the lower bound

on α is at most 1
2 ; however, Bob might not be involved in

the project with νA so high. As such, if we consider more
realistic values of νA ∈ [0.25, 0.75], the lower bound drops
to at most 0.28125 or lower. This lower bound on α is not
very restrictive, as α ∈ (0, 2].

Theorem 2. If high efforts bring net costs and α >
ν2A
2 ,

then Alice’s optimal action set in round 2 is (e(2)∗A , r (2)∗A ) =

(0, 1
2 r

(1)
B ), and her optimal expected payoff score in round 2 is

E
[
π

(2)∗
A (r (1)B )

]
=

1
2

(
r (1)B

)2
.

Proof. To find the optimal function value f (2)∗A , similarly to
Theorem 1, we need to check the Hessian of function f (2)A :

∇
2f (2)A (e(2)A , r (2)A ) =

⎡⎢⎢⎢⎢⎣
∂2f (2)A

∂(e(2)A )2
∂2f (2)A

∂e(2)A ∂r (2)A

∂2f (2)A

∂r (2)A ∂e(2)A

∂2f (2)A

∂(r (2)A )2

⎤⎥⎥⎥⎥⎦
=

[
− 2α 2νA

2νA −4

]
.

We find that f (2)A is a concave function. By Lemma 3,
there is only one candidate for our maximization, namely
(0, r (1)B /2). Therefore, (0, r (1)B )/2 is the optimal solution. □

Next, we consider Bob in round 1. From Theorems 1 and
2, we have e(2)∗A = e(2)∗B = 0. Knowing ẽ(2)A = ẽ(2)B = 0, we
get the expression of f (1)B , Bob’s expected cost in round 1 for
action a(1)B = (e(1)B , r (1)B ), as:

f (1)B = −α · (e(1)B )2 + 2
(
r (1)A + (e(1)B − 0.5)(1 − νA)

)
(
r (1)B − r (1)A

)
+ 2

(
(r (1)A )2 − (r (1)B )2

)
.

(17)

Lemma 4. If α > max{ (1−νA)2

2 ,
ν2A
2 } , then

(e(2)∗B , r (2)∗B )

=

⎧⎪⎨⎪⎩
(0, 0), if 0 ⩽ r (1)B ⩽

1
2
(1 − νA);

(0, r (2)A −
1
4
(1 − νA)), if

1
2
(1 − νA) ⩽ r (1)B ⩽ 1,

f (2)∗B =

⎧⎪⎨⎪⎩
−2(r (2)A )2 + (1 − νA)r

(2)
A , if 0 ⩽ r (1)B ⩽

1
2
(1 − νA);

1
8
(νA − 1)2, if

1
2
(1 − νA) ⩽ r (1)B ⩽ 1.

Proof. According to Theorem 2, we know that r (2)∗A =
1
2 r

(1)
B . Together with the statement of Theorem 1, we infer

Lemma 4. □

We nowmove to Bob’s optimal action in the first round.
We find that Bob will exert low effort and report as 0 in
round 1 regardless of Alice’s report in round 1.

Theorem 3. If high efforts bring net costs, α > max{ (1−νA)2

2 ,
ν2A
2 }, and 0 < νA < 1

3 , then Bob’s optimal action set in
round 1 is (e(1)∗B , r (1)∗B ) = (0, 0), and his expected total payoff
score from this round to the final round is E

[
π

(1)∗
B (r (1)A )

]
=

r (1)A (1 − νA).

Proof. According to the definitions of E[π
(1)
B (r (1)A , a(1)B )], f (1)B

and f (2)∗B , we know that

E
[
π

(1)
B (r (1)A , a(1)B )

]
= f (1)B + δf (2)∗B ,

and f (2)∗B is fixed for a given value of r (2)∗A . We know from
Lemma 4 that if r (1)B ⩽ 1

2 (1 − νA), then (e(2)∗B , r (2)∗B ) = (0, 0)
and f (2)∗B = −

1
2 (r

(1)
B )2 +

1
2 (1−νA)r

(1)
B ; but if r (1)B ⩾ 1

2 (1−νA),

then (e(2)∗B , r (2)∗B ) = (0, r (2)A −
1
4 (1 − νA)) and f (2)∗B =

1
8 (1 −

νA)2.
We first consider the case in which f (2)∗B is a function of

r (1)B as f (2)∗B = −
1
2 (r

(1)
B )2 +

1
2 (1 − νA)r

(1)
B , if r (1)B ⩽ 1

2 (1 − νA).
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Under this condition, f (1)B + δf (2)∗B is a concave function if

α > max{ (1−νA)2

2 ,
ν2A
2 }. Similarly to Theorems 1 and 2, we

find and compare the KKT points of f (1)B + δ · f (2)∗B . It turns
out that f (1)B +δf (2)∗B ismaximized at (e(1)B , r (1)B ) = (0, 0)with
value r (1)A (1 − νA). Details are omitted. (Note: The proofs
in the rest of the paper will all omit the details about KKT
points.)

Second, we discuss the case in which f (2)∗B is a constant
as f (2)∗B =

1
8 (νA − 1)2 if 1

2 (1 − νA) ⩽ r (1)B ⩽ 1. Under this
condition, f (1)B + δf (2)∗B is also a concave function if α >

max{ (1−νA)2

2 ,
ν2A
2 }. Again, similarly to Theorems 1 and 2, we

identify and compare all of the KKT points of the function
in order to find the optimal solution. It turns out that the
function is maximized at (e(1)B , r (1)B ) = (0, 0) with value
r (1)A (1 − νA), under an additional condition: 0 < νA < 1

3 .
In conclusion, the optimal value of E[π

(1)
B (r (1)A , a(1)B )] is

obtained as E
[
π

(1)∗
B (r (1)A )

]
= r (1)A (1 − νA) at (e

(1)∗
B , r (1)∗B ) =

(0, 0), under the given conditions. So Theorem 3 is true. □

Finally, we consider Alice in round 1. Theorems 1–3
have already proved that e(1)∗B = e(2)∗A = e(2)∗B = r (1)∗B = 0
and f (2)∗A =

1
2 (r

(1)
B )2 = 0, no matter what effort Alice exerts

and no matter what report she makes in round 1. In this
situation f (2)∗A = 0, andwe get the expression f (1)A +δf (2)∗A =

E
[
π

(1)
A (r (0)B , a(1)A )

]
, where a(1)A = (e(1)A , r (1)A ), as:

f (1)A + δf (2)∗A = −α

(
e(1)A

)2
+ 2νAe

(1)
A

(
r (1)A − r (0)B

)
+ 2

(
(r (0)B )2 − (r (1)A )2

)
(18)

We now move to Alice’s optimal action in the first round.
We find that Alice will exert low effort and report as 0 in
round 1 regardless of the initial market estimate.

Theorem 4. If high efforts bring net costs and α >

max{ (1−νA)2

2 ,
ν2A
2 }, then Alice’s optimal action set in round 1

is (e(1)∗A , r (1)∗A ) = (0, 0), and her expected total payoff score
between this round and the final round is E[π

(1)∗
A (r (0)B )] =

2(r (0)B )2.

Proof. Similarly to the previous theorems, we can show
that the function f (1)A + δ · f (2)∗A is concave, and can also
find its KKT points. By comparing the function values of
the feasible KKT points, we conclude immediately that the
optimal value of f (1)A + δ · f (2)∗A is achieved as 2(r (0)B )2 when
(e(1)∗A , r (1)∗A ) = (0, 0). Details are omitted. Thus, Theorem 4
is true. □

Summarizing the results in Theorems 1–4, we infer the
set of equilibrium strategies and payoffs for both agents
over 2 rounds in Table 3 (under the conditions given in the
theorems).

We can conclude immediately that if α > max{ (1−νA)2

2 ,
ν2A
2 } and 0 < νA < 1

3 , then not only will all of the agents’ re-
ports be 0, but sowill all of their effort values. This suggests
that even when agents are strategic and external incen-
tives exist, the proposed market scoring rule is incentive-
compatible regardless of the initial market estimate, as

Table 3
Equilibrium strategies and payoffs in case 1.

Round i Player j a(i)∗j = (e(i)∗j , r (i)∗j ) E[π
(i)∗
j , .]

1 A a(1)∗A = (0, 0) 2(r (0)B )2

1 B a(1)∗B = (0, 0) 0

2 A a(2)∗A = (0, 0) 0

2 B a(2)∗B = (0, 0) 0

long as we set proper ranges for α and νA. The next section
derives the symmetric result when the cost of high effort is
negative.

4.3. Case 2: High efforts bring net rewards to agents

Case 2 assumes that the two agents’ efforts together
decide the outcome of E and the ultimate value of secu-
rity F , but that high efforts will bring negative net costs
(equivalent to positive net rewards) to the agents who
exert them. We further assume that the payoff function of
the exerted effort is ρe(e) = αe2(α > 0):

ρe(e
(i)
A ) = α(e(i)A )2, (19a)

ρe(e
(i)
B ) = α(e(i)B )2. (19b)

In order to enable us to compare cases 1 and 2, we set
the same range for α as before, namely α > max{ (1−νA)2

2 ,
ν2A
2 }. Here we set Alice’s impact on deciding the likelihood
of E as νA ∈ (0, 1), and have the same definition of Alice’s
(Bob’s) belief on the likelihood of E finally occurring held
in each round as that of case 1. Likewise, we continue using
the quadratic scoring rule in the predictionmarket.We also
note that, since the proofs for case 2 are similar to those
for case 1, some technical details will be omitted in this
subsection.

In case 2,we still have I (i)A = r (i−1)
B and I (i)B = r (i)A as in case

1. After inserting the reward functions of exerted efforts
(Eq. (19)), the belief regarding the likelihood of E occurring
(Eq. (7)) perceived by agents, and the reward functions
in the prediction market (Eq. (11)) into the maximization
equations (Eq. (8)) for Alice and Bob separately, we get the
following maximization equations when T = 2.

For agent Alice:

E
[
π

(1)∗
A (r (0)B )

]
= max

(e(1)A ,r(1)A )

{
δE
[
π

(2)∗
A (r̃ (1)B )

]
+ α(e(1)A )2 (20a)

+ 2

(
νA(e

(1)
A + ẽ(2)A ) + (1 − νA)

2∑
n=1

ẽ(n)B

)
(
r (1)A − r (0)B

)
+2

(
(r (0)B )2 − (r (1)A )2

)}
,

E
[
π

(2)∗
A (r (1)B )

]
= max

(e(2)A ,r(2)A )

{
α(e(2)A )2 (20b)

+ 2
(
r (1)B + νAe

(2)
A + (1 − νA)ẽ

(2)
B

)
×

(
r (2)A − r (1)B

)
+2

(
(r (1)B )2 − (r (2)A )2

)}
.
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For agent Bob:

E
[
π

(1)∗
B (r (1)A )

]
= max

(e(1)B ,r(1)B )

{
δE
[
π

(2)∗
B (r̃ (2)A )

]
+ α(e(1)B )2 (21a)

+ 2
(
r (1)A + νAẽ

(2)
A + (1 − νA)

× (e(1)B + ẽ(2)B − 0.5)
)

×

(
r (1)B − r (1)A

)
+ 2

(
(r (1)A )2 − (r (1)B )2

)}
,

E
[
π

(2)∗
B (r (2)A )

]
= max

(e(2)B ,r(2)B )

{
α(e(2)B )2

+ 2
(
2r (2)A + (1 − νA)(e

(2)
B − 0.5)

)
×

(
r (2)B − r (2)A

)
+ 2

(
(r (2)A )2 − (r (2)B )2

)}
. (21b)

Next, similarly to case 1, we identify all KKT points of
the function and then find the optimal solutions.

In round 2, we consider Bob’s function of expected
payoff scores f (2)B = E

[
π

(2)
B (r (2)A , a(2)B )

]
for action a(2)B =

(e(2)B , r (2)B ):

f (2)B = α(e(2)B )2 + 2
(
2r (2)A + (1 − νA)(e

(2)
B − 0.5)

)
×

(
r (2)B − r (2)A

)
+ 2

(
(r (2)A )2 − (r (2)B )2

)
. (22)

Lemma 5. If α > max{ (1−νA)2

2 ,
ν2A
2 } and r (2)A ⩽

3+νA
4 , then

(e(2)∗B , r (2)∗B ) = (1, r (2)A +
1
4 (1 − νA)) and E[π

(2)∗
B (r (2)A )] =

α +
1
8 (1 − νA)2.

Proof. Similarly to Lemma 1, we first find the Hessian of
function f (2)B :

∇
2f (2)B (e(2)B , r (2)B ) =

⎡⎢⎢⎢⎢⎣
∂2f (2)B

∂(e(2)B )2
∂2f (2)B

∂e(2)B ∂r (2)B

∂2f (2)B

∂r (2)B ∂e(2)B

∂2f (2)B

∂(r (2)B )2

⎤⎥⎥⎥⎥⎦
=

[
2α 2(1 − νA)
2(1 − νA) −4

]
.

The first principle minor of ∇
2f (2)B (e(2)B , r (2)B ) is positive

for det
[

∂2f (2)B

∂(e(2)B )2

]
= 2α > 0. The second principle minor is

negative because:

det

⎡⎢⎢⎢⎢⎣
∂2f (2)B

∂(e(2)B )2
∂2f (2)B

∂e(2)B ∂r (2)B

∂2f (2)B

∂r (2)B ∂e(2)B

∂2f (2)B

∂(r (2)B )2

⎤⎥⎥⎥⎥⎦ = −8α − 4(1 − νA)2 < 0.

We find that the Hessian of f (2)B is an indefinite matrix,
so we need to find all KKT points and compare the cor-
responding values of f (2)B for each point, since f (2)∗B must
be obtained in one of these KKT points. All (feasible) KKT
points of f (2)B and their corresponding f (2)B function values

are presented in Table 4. (Note: To simplify our analysis,
unfeasible KKT points are not shown in the tables in this
subsection.) We find that if r (2)A ⩽

3+νA
4 , f (2)∗B is attained as

α +
1
8 (1 − νA)2 when (e(2)B , r (2)B ) = (1, r (2)A +

1
4 (1 − νA)). So

Lemma 5 is true. □

Lemma 6. If α > max{ (1−νA)2

2 ,
ν2A
2 } and r (2)A ⩾

3+νA
4 , then

(e(2)∗B , r (2)∗B ) = (1, 1) and E
[
π

(2)∗
B (r (2)A )

]
= −2(r (2)A )2 + (νA +

3)r (2)A + α − νA − 1.

Proof. Similarly to the proof for Lemma 5, if r (2)A ⩾
3+νA

4 , we
find by comparing the values of f (2)B for feasible KKT points
that f (2)∗B is attained as f (2)∗B = −2(r (2)A )2 + (νA + 3)r (2)A +

α − νA − 1 when (e(2)∗B , r (2)∗B ) = (1, 1). Details are omitted.
So Lemma 6 is true. □

Now, we are ready to determine Bob’s round 2 decision.

Theorem 5. If high efforts bring net rewards and α >

max{ (1−νA)2

2 ,
ν2A
2 }, then

(e(2)∗B , r (2)∗B ) =

⎧⎪⎨⎪⎩
(1, r (2)A +

1
4
(1 − νA)), if 0 ⩽ r (2)A ⩽

3 + νA

4
;

(1, 1), if
3 + νA

4
⩽ r (2)A ⩽ 1.

f (2)∗B =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α +

1
8
(1 − νA)2, if 0 ⩽ r (2)A ⩽

3 + νA

4
;

−2(r (2)A )2 + (νA + 3)r (2)A

+α − νA − 1, if
3 + νA

4
⩽ r (2)A ⩽ 1.

Proof. With Lemmas 5 and 6, Theorem 5 is true. □

Next, we consider Alice in round i = 2 when Bob’s
future effort is ẽ(2)B . We know from Theorem 5 that ẽ(2)B =

e(2)∗B = 1. After inserting ẽ(2)B = 1 into f (2)A = E[
π

(2)
A , r (1)B , a(2)A

]
, we get:

f (2)A =α(e(2)A )2 + 2
(
r (1)B + νA · e(2)A + 1 − νA

)
(r (2)A − r (1)B )

+ 2
(
(r (1)B )2 − 2(r (2)A )2

)
.

(23)

Regarding Alice’s optimal actions in round 2, we find
that Alice will exert high effort and report as 1 in round 2
no matter what Bob reports in round 1.

Theorem 6. If high efforts bring net rewards and α >

max{ (1−νA)2

2 ,
ν2A
2 }, Alice’s optimal action set in round 2 is

(e(2)∗A , r (2)∗A ) = (1, 1
2 (r

(1)
B + 1)), and the optimal expected

payoff score of round 2 is E[π
(2)∗
A (r (1)B )] = α +

1
2 (r

(1)
B )2 +

1
2 − r (1)B .

Proof. We find the value of f (2)∗A by finding all of the
KKT points of f (2)A and the corresponding function values
(see Table 5). By routine calculations, we find that f (2)A
is maximized as f (2)∗A = α +

1
2 (r

(1)
B )2 +

1
2 − r (1)B when

(e(2)A , r (2)A ) = (1, 1
2 (r

(1)
B + 1)). Thus, Theorem 6 is true. □
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Table 4
KKT points of f (2)B in case 2.

e(2)B r (2)B f (2)B

0 r (2)A −
1
4 (1 − νA) 1

8 (1 − νA)2

1 r (2)A +
1
4 (1 − νA) α +

1
8 (1 − νA)2

r(2)A (1−νA)
α

0 −2(r (2)A )2 + r (2)A (1 − νA) −
(r(2)A )2(1−νA)2

α

0 0 −2(r (2)A )2 + (1 − νA)r
(2)
A

0 1 −2(r (2)A )2 + (5 − νA)r
(2)
A + νA − 3

1 0 −2(r (2)A )2 + (νA − 1)r (2)A + α

1 1 −2(r (2)A )2 + (νA + 3)r (2)A + α − νA − 1

Table 5
KKT points of f (2)A in case 2.

e(2)A r (2)A f (2)A

0 1
2 r

(1)
B +

1
2 (1 − νA) 1

2 (r
(1)
B )2 +

1
2 (1 − νA)2 − r (1)B (1 − νA)

1 1
2 (r

(1)
B + 1) α +

1
2 (r

(1)
B )2 +

1
2 − r (1)B

νAr
(1)
B

α
0 −2r (1)B (1 − νA) −

(νAr
(1)
B )2

α

0 0 −2r (1)B (1 − νA)

0 1 −2νA(1 − r (1)B )

1 0 −2r (1)B + α

1 1 α

We now consider Bob in round 1. From Theorems 5 and
6, we know that e(2)∗A = e(2)∗B = 1. Knowing ẽ(2)A = ẽ(2)B = 1,
we get the expression of f (1)B as:

f (1)B =α · (e(1)B )2 + 2
(
r (1)A + νA + (1 − νA)(e

(1)
B + 0.5)

)
× (r (1)B − r (1)A )

+ 2
(
(r (1)A )2 − 2(r (1)B )2

)
.

(24)

Next, we need three lemmas for the maximum value of
E
[
π

(1)
B (r (2)A , a(1)B )

]
= f (1)B + δf (2)∗B , where a(1)B = (e(1)B , r (1)B ).

Lemma 7. If α > max{ (1−νA)2

2 ,
ν2A
2 }, then

(e(2)∗B , r (2)∗B ) =

⎧⎪⎨⎪⎩
(1, r (2)A +

1
4
(1 − νA)), if 0 ⩽ r (1)B ⩽

1
2
(1 + νA);

(1, 1), if
1
2
(1 + νA) ⩽ r (1)B ⩽ 1.

f (2)∗B =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
α +

1
8
(νA − 1)2, if 0 ⩽ r (1)B ⩽

1
2
(1 + νA);

−
1
2
(r (1)B )2 +

1
2
r (1)B +

1
2
r (1)B νA

−
1
2
νA + α, if

1
2
(1 + νA) ⩽ r (1)B ⩽ 1.

Proof. By Theorem 6, we know that r (2)∗A =
1
2 (r

(1)
B +

1). Together with the statement of Theorem 5, we infer
Lemma 7. □

Lemma 8. If α > max{ (1−νA)2

2 ,
ν2A
2 } and r (1)A ⩽

νA+1
2 , then

(e(1)∗B , r (1)∗B ) = (1, 1
2 r

(1)
A +

1
4 (3 − νA)) and

E
[
π

(1)∗
B (r (1)A )

]
=

1
2
r (1)A (r (1)A − 3 + νA) + α +

1
8
ν2
A

−
3
4
νA +

9
8

+ δ

(
α +

1
8
(1 − νA)2

)
.

Proof. We know from Lemma 7 that f (2)∗B is obtained as
f (2)∗B = α +

1
8 (1 − νA)2 when r (1)B ⩽ 1

2 (1 + νA); and
as f (2)∗B = −

1
2 (r

(1)
B )2 +

1
2 r

(1)
B +

1
2 r

(1)
B νA −

1
2νA + α when

r (1)B ⩾ 1
2 (1 + νA).

We first discuss the situation where f (2)∗B is a constant
as f (2)∗B = α +

1
8 (1 − νA)2 when r (1)B ⩽ 1

2 (1 + νA). We
begin by finding all of the KKT points of f (1)B + δ · f (2)∗B . We
find that when r (1)A ⩽

1+νA
2 , f (1)B + δ · f (2)∗B is maximized as

1
2 r

(1)
A (r (1)A −3+νA)+α+

1
8ν

(2)
A −

3
4νA+

9
8 +δ(α+

1
8 (νA−1)2)

at (e(1)B , r (1)B ) = (1, 1
2 r

(1)
A +

1
4 (3 − νA)).

Second,wediscuss the situationwhere f (2)∗B is a function
of r (1)B as f (2)∗B = −

1
2 (r

(1)
B )2 +

1
2 r

(1)
B +

1
2 r

(1)
B νA −

1
2νA + α, if

r (1)B ⩾ 1
2 (1 + νA). Using the same method, we find that

f (1)B + δ · f (2)∗B is maximized as (1 − νA)(1 − r (1)A ) + α(1 + δ)
at (e(1)B , r (1)B ) = (1, 1).

By routine calculations, we know that value of the first
expression of f (1)B + δ · f (2)∗B is larger than that of the second
expression. So E

[
π

(1)∗
B (r (1)A )

]
is achieved as 1

2 r
(1)
A (r (1)A − 3+

νA)+α+
1
8ν

2
A −

3
4νA+

9
8 +δ(α+

1
8 (νA−1)2) at (e(1)∗B , r (1)∗B ) =

(1, 1
2 r

(1)
A +

1
4 (3 − νA)), and therefore Lemma 8 is true. □

Lemma 9. If α > max{ (1−νA)2

2 ,
ν2A
2 } and r (1)A ⩾

νA+1
2 , then

(e(1)∗B , r (1)∗B ) = (1, 1) and

E
[
π

(1)∗
B (r (2)A )

]
= (1 − νA)(1 − r (1)A ) + α(1 + δ)

+δνA(
1
2

− νA).

Proof. The proof is similar to that of Lemma 8. Details are
omitted. □

Given the two cases for Bob’s equilibrium decisions in
round 1, we may now determine Bob’s round 1 decisions
as follows.

Theorem 7. If high efforts bring net rewards and α >

max{ (1−νA)2

2 ,
ν2A
2 }, then

(e(1)∗B , r (1)∗B ) =

⎧⎪⎨⎪⎩
(1,

1
2
r (1)A +

1
4
(3 − νA)), if 0 ⩽ r (1)A ⩽

νA + 1
2

;

(1, 1), if
νA + 1

2
⩽ r (1)A ⩽ 1.

E
[
π

(1)∗
B (r (1)A )

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
r (1)A (r (1)A − 3 + νA) + α +

1
8
νA,

−
3
4
νA +

9
8

+ δ

(
α +

1
8
(1 − νA)2

)
, if 0 ⩽ r (1)A ⩽

νA + 1
2

;

(1 − νA)(1 − r (1)A ) + α

+ δ

(
α + νA(

1
2

− νA)
)

, if
νA + 1

2
⩽ r (1)A ⩽ 1.
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Table 6
Equilibrium strategies and payoffs in case 2.

Round, i Player, j a(i)∗j = (e(i)∗j , r (i)∗j ) E
[
π

(i)∗
j (·)

]
1 A a(1)∗A = (1, 1) 2(r (0)B − 1)2 + (1 + δ)α

1 B a(1)∗B = (1, 1) α(1 + δ) + δνA( 12 − νA)

2 A a(2)∗A = (1, 1) α

2 B a(2)∗B = (1, 1) α

Proof. With Lemmas 8 and 9, Theorem 7 is true. □

Finally, we consider Alice in round 1. We have already
proved in Theorems 5–7 that e(1)∗B = e(2)∗A = e(2)∗B = 1 and
E[π

(2)∗
A (r (1)B )] = α+

1
2 (r

(1)
B )2+

1
2 −r (1)B . After inserting ẽ(1)B =

ẽ(2)A = ẽ(2)B = 1 and E
[
π

(2)∗
A (r̃ (1)B )

]
into E

[
π

(1)
A (r (0)B , a(1)A )

]
,

we obtain

E
[
π

(1)
A (r (1)B , a(2)A )

]
= f (1)A + δf (2)∗A

= δ

(
α +

1
2
(1)2 +

1
2

− 1
)

+ α(e(1)A )2

+ 2
(
νAe

(1)
A + 2 − νA

)
(r (1)A − r (0)B )

+ 2
(
(r (0)B )2 − 2(r (1)A )2

)
= α

(
δ + (e(1)A )2

)
+ 2

(
νAe

(1)
A + 2 − νA

)
(r (1)A − r (0)B )

+ 2
(
(r (0)B )2 − (r (1)A )2

)
.

(25)

We now move on to Alice’s optimal actions in the first
round.We find thatAlicewill exert high effort and report as
1 in round 1 no matter what the initial market estimate is.

Theorem 8. If α > max{ (1−νA)2

2 ,
ν2A
2 }, then Alice’s optimal

action set in round 1 is (e(1)∗A , r (1)∗A ) = (1, 1), and her ex-
pected total payoff score from this round to the final round
is E[π

(1)∗
A (r (0)B )] = 2(r (0)B − 1)2 + (1 + δ)α.

Proof. Similar to previous theorems, we first identify all of
the KKT points of f (1)A +δf (2)∗A . We then find that the optimal
value of f (1)A + δ · f (2)∗A is achieved as 2(r (0)B − 1)2 + (1 +

δ)α when (e(1)∗A , r (1)∗A ) = (1, 1). Details are omitted. Thus,
Theorem 8 is true. □

Summarizing the results in Theorems 5–8, we infer the
set of optimal equilibrium strategies a(i)∗j = (e(i)∗j , r (i)∗j ) and
their corresponding payoffs for both agents over the two
rounds in Table 6 (under the conditions specified in the
theorems).

We can conclude immediately that if α > max{ (1−νA)2

2 ,
ν2A
2 }, then not only will all of the agents’ reports be 1, but
so will all of their effort values. The results in Sections 4.2
and 4.3 generalize to the four-round setting, but it is still
not clear whether they generalize for any value of T .

We carried out numerical simulations, via simulated
annealing, for T > 4, and found that, if we start with
random values of r (i)j and e(i)j , the final Pareto dominant

solution for player j ∈ {A, B} over all rounds was one,
with all players either reporting truthfully and exerting
high effort (referred to as the truthful solution), or mostly
exerting high effort and being truthful but with some
deviation in effort and reports, called the mixed solution.
The most interesting aspect of our numerical simulations
is that, for the solutions we found, the truthful solution
always had a higher payoff for Alice than the mixed solu-
tion, while Bob had a higher payoff in the mixed solution
than in the truthful solution. In addition, the values of the
payoff functions tended to differ only in the hundredths
or thousandths place of the reward function values across
the two solutions. Given our findings, we conclude that
the results of the numerical simulation are inconclusive,
because we started with a random set of actions for all
players across all rounds, and the Pareto dominant solu-
tion that we find may be infeasible, as Alice is the first
mover in the game. As the first mover, Alice might take
action to avoid ever reaching the initial state of the game
(where we started the simulation), since she is rational
and would receive a higher payoff in the truthful solution
than the mixed solution. Thus, in order for a simulation to
make sense, it must take into account Alice’s first-mover
advantage.

4.4. Case 3: External incentives do not exist

Case 3 assumes that the two agents’ efforts together de-
cide the outcome of E and the ultimate value of the security
F , but that their efforts will bring no payoffs to the agents
who exert them (ρe(e) = 0). Previous work has shown
that when external incentives do not exist outside of the
predictionmarket, non-myopic agents have an incentive to
bluff in the predictionmarket (Chen et al., 2010;Dimitrov&
Sami, 2008). Case 3 shows that this result also applies to our
model. We assume νA =

1
2 (Alice and Bob have the same

input when deciding the probability of E occurring) and
r (0)B =

3
4 (the initial market estimate is set to 3

4 ). Under the
above assumptions, we then have Alice’s and Bob’s Bellman
equations in the two-round setting as follows.

For agent Alice (with r (0)B =
3
4 ):

E
[
π

(1)∗
A (r (0)B )

]
= max

(e(1)A ,r(1)A )

{
δE
[
π

(2)∗
A (r̃ (1)B )

]
(26a)

+ 2
(
νA(e

(1)
A + ẽ(2)A ) + (1 − νA)(ẽ

(1)
B + ẽ(2)B )

)
× (r (1)A − r (0)B )

+2
(
(r (0)B )2 − (r (1)A )2

)}
,

E
[
π

(2)∗
A (r (1)B )

]
= max

(e(2)A ,r(2)A )

{
2
(
r (1)B + νA · ẽ(2)A + (1 − νA)ẽ

(2)
B

)
(26b)

× (r (2)A − r (1)B ) + 2
(
(r (1)B )2 − (r (2)A )2

)}
.

For agent Bob:

E
[
π

(1)∗
B (r (1)A )

]
= max

(e(1)B ,r(1)B )

{
δE[π

(2)∗
B (r̃ (2)A )] (27a)

+ 2
(
r (1)A + νA · ẽ(2)A + (1 − νA) (27b)

×

(
e(1)B + ẽ(2)B − 0.5

))
× (r (1)B − r (1)A ) +

(
(r (1)A )2 − (r (1)B )2

)}
,
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Table 7
Equilibrium strategies in case 3.

Round, i Player, j a(i)∗j = (e(i)∗j , r (i)∗j ) E
[
π

(i)∗
j (·)

]
1 A a(1)∗A = (0, 1

2 )
1
8

1 B a(1)∗B = (1, 7
8 )

1
32

2 A a(2)∗A = (0, 11
16 )

9
128 +

1
8 δ

2 B a(2)∗B = (1, 13
16 )

1
32 (1 + δ)

E
[
π

(2)∗
B (r (2)A )

]
= max

(e(2)B ,r(2)B )

{
2
(
r (2)A + (1 − νA)(e

(2)
B − 0.5)

)
(27c)

× (r (2)B − r (2)A ) + 2
(
(r (2)A )2 − (r (2)B )2

)}
.

Using backwards induction, as was explained in detail
for cases 1 and 2, we infer the set of equilibrium strategies
(e(i)∗j , r (i)∗j ) and their corresponding payoffs E

[
π

(i)∗
j (·)

]
for

both agents of 2 rounds in Table 7, under the initial condi-
tion r (0)B =

3
4 . Technical details are omitted.

Thus, in case 3 where external incentives do not exist,
we observe directly from the optimal actions that agents
do not necessarily exert high efforts on E, and also do not
report truthfully in the prediction market.

4.5. Case 4: High efforts bring net rewards to agents in a four-
round setting

In this case, similarly to Case 2, we assume that high
efforts will bring negative net costs (equivalent to positive
net rewards) to agents who exert them. Here, though, we
extend the number of rounds from two to four. In order
to compare case 4 properly with the previous cases, we
assume the payoff function of exerted effort to be ρe(e) =

α · e2(α > 0), as we did for case 2 in Eq. (19), and we

again set the range for α to α > max{ (1−νA)2

2 ,
ν2A
2 }. We set

Alice’s impact on deciding the likelihood of E as νA ∈ (0, 1),
and have the same definition of Alice’s (Bob’s) belief on the
likelihood of E finally occurring held in each round as that
of case 1.We also continue to use the quadratic scoring rule
in the predictionmarket. In case 4, we still have I (i)A = r (i−1)

B
and I (i)B = r (i)A as in cases 1 and 2.

After inserting the reward functions of exerted efforts
(Eq. (19)), the agents’ perceived belief regarding the like-
lihood of E occurring (Eq. (7)), and the reward functions
in the prediction market (Eq. (11)) into the maximization
equations (Eq. (8)) for Alice and Bob separately, we get the
following maximization equations when T = 4.

For agent Alice:

E[π
(1)∗
A (r (0)B )] = max

(e(1)A ,r(1)A )

{
δE[π

(2)∗
A (r̃ (1)B )] + α(e(1)A )2 (28a)

+

(
νA(e

(1)
A +

4∑
n=2

ẽ(n)A ) + (1 − νA)
4∑

n=1

ẽ(n)B

)
×

(
r (1)A − r (0)B

)
+2

(
(r (0)B )2 − (r (1)A )2

)}
,

E[π
(2)∗
A (r (1)B )] = max

(e(2)A ,r(2)A )

{
δE[π

(3)∗
A (r̃ (2)B )] + α(e(2)A )2 (28b)

+

(
r (1)B + νA

(
e(2)A +

4∑
n=3

ẽ(n)A

)

+(1 − νA)
4∑

n=2

ẽ(n)B

)(
r (2)A − r (1)B

)
+2

(
(r (1)B )2 − (r (2)A )2

)}
,

E[π
(3)∗
A (r (2)B )] = max

(e(3)A ,r(3)A )

{
δE[π

(4)∗
A (r̃ (3)B )] + α(e(3)A )2 (28c)

+

(
2r (2)B + νA

(
e(3)A + ẽ(4)A

)
+(1 − νA)

4∑
n=3

ẽ(n)B

)(
r (3)A − r (2)B

)
+2

(
(r (2)B )2 − (r (3)A )2

)}
,

E[π
(4)∗
A (r (3)B )] = max

(e(4)A ,r(4)A )

{
α(e(4)A )2 (28d)

+

(
3r (3)B + νAe

(4)
A + (1 − νA)ẽ

(4)
B

)
×

(
r (4)A − r (3)B

)
+2

(
(r (3)B )2 − (r (4)A )2

)}
,

For agent Bob:

E[π
(1)∗
B (r (1)A )] = max

(e(1)B ,r(1)B )

{
δE[π

(2)∗
B (r̃ (2)A )] + α(e(1)B )2 (29a)

+

(
r (1)A + νA

4∑
n=2

ẽ(n)A + (1 − νA)

×

(
e(1)B +

4∑
n=2

ẽ(n)B − 0.5

))
×

(
r (1)B − r (1)A

)
+ 2

(
(r (1)A )2 − (r (1)B )2

)}
,

E[π
(2)∗
B (r (2)A )] = max

(e(2)B ,r(2)B )

{
δE[π

(3)∗
B (r̃ (3)A )] + α(e(2)B )2 (29b)

+

(
2r (2)A + νA

4∑
n=3

ẽ(n)A + (1 − νA)

×

(
e(2)B +

4∑
n=3

ẽ(n)B − 0.5

))
×

(
r (2)B − r (2)A

)
+ 2

(
(r (2)A )2 − (r (2)B )2

)}
,

E[π
(3)∗
B (r (3)A )] = max

(e(3)B ,r(3)B )

{
δE[π

(4)∗
B (r̃ (4)A )] + α(e(3)B )2 (29c)

+

(
3r (3)A + νAẽ

(4)
A + (1 − νA)

×

(
e(3)B + ẽ(4)B − 0.5

))
×

(
r (3)B − r (3)A

)
+ 2

(
(r (3)A )2 − (r (3)B )2

)}
.

E[π
(4)∗
B (r (4)A )] = max

(e(4)B ,r(4)B )

{
α(e(4)B )2 (29d)
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+

(
4r (4)A + (1 − νA)

(
e(4)B − 0.5

))
× (r (4)B − r (4)A )

+2
(
(r (4)A )2 − (r (4)B )2

)}
.

Lemma 10. If α > max{ (1−νA)2

2 ,
ν2A
2 } and r (4)A ⩽

7+νA
8 , then

(e(4)∗B , r (4)∗B ) = (1, r (4)A +
1
8 (1 − νA)) and E[π

(4)∗
B (r (4)A )] =

α +
1
8 (1 − νA)2.

Proof. When i = 4, there are no future rounds. Consider
Bob’s function of expected payoff scores in round 4 as f (4)B :

f (4)B =E[π
(4)
B (r (4)A , a(4)B )]

=α(e(4)B )2 +

(
4r (4)A + (1 − νA)(e

(4)
B − 0.5)

)
×

(
r (4)B − r (4)A

)
+ 2

(
(r (4)A )2 − (r (4)B )2

)
.

(30)

Then, we obtain

∇
2f (4)B (e(4)B , r (4)B ) =

⎡⎢⎢⎢⎢⎣
∂2f (4)B

∂(e(4)B )2
∂2f (4)B

∂e(4)B ∂r (4)B

∂2f (4)B

∂r (4)B ∂e(4)B

∂2f (4)B

∂(r (4)B )2

⎤⎥⎥⎥⎥⎦
=

[
2α 1 − νA

1 − νA −4

]
.

The first principle minor of ∇
2f (4)B (e(4)B , r (4)B ) is positive

because det
[

∂2f (4)B

∂(e(4)B )2

]
= 2α > 0. The second principle

minor is negative because:

det

⎡⎢⎢⎢⎢⎣
∂2f (4)B

∂(e(4)B )2
∂2f (4)B

∂e(4)B ∂r (4)B

∂2f (4)B

∂r (4)B ∂e(4)B

∂2f (4)B

∂(r (4)B )2

⎤⎥⎥⎥⎥⎦ = −8α − (1 − νA)2 < 0.

We find that the Hessian of f (4)B is an indefinite matrix,
so we still need to find its KKT points and compare the cor-
responding values of f (4)B , as the maximal value f (4)∗B must
be attained in one of these KKT points. Table 8 reports the
KKT points of f (4)B and the corresponding function values.
However, to simplify our analysis, the table does not show
unfeasible KKT points. We find that if r (4)A ⩽

7+νA
8 , f (4)∗B is

attained as α +
1
8 (1 − νA)2 when (e(4)B , r (4)B ) = (1, r (4)A +

1
8 (1 − νA)). So Lemma 10 is true. □

Lemma 11. If α > max{ (1−νA)2

2 ,
ν2A
2 } and r (4)A ⩾

7+νA
8 , then

(e(4)∗B , r (4)∗B ) = (1, 1) and E[π
(4)∗
B (r (4)A )] = α − 2(1− r (4)A )2 +

(1−νA)(1−r(4)A )
2 .

Proof. Similarly to the proof for Lemma 10, if r (4)A ⩾
7+νA

8 ,
we find by comparing the values of f (4)B of feasible KKT
points in Table 8 that f (4)∗B is attained as f (4)∗B = α −

2(1 − r (4)A )2 +
(1−νA)(1−r(4)A )

2 when (e(4)∗B , r (4)∗B ) = (1, 1). So
Lemma 11 is true. □

Given the two cases for Bob’s equilibrium decisions in
round 4, we may now determine Bob’s round 4 decisions:

Theorem 9. If high efforts bring net rewards and α >

max{ (1−νA)2

2 ,
ν2A
2 }, then

(e(4)∗B , r (4)∗B ) =

⎧⎪⎨⎪⎩
(1, r (4)A +

1
8
(1 − νA)) if 0 ⩽ r (4)A ⩽

7 + νA

8
(1, 1) if

7 + νA

8
⩽ r (4)A ⩽ 1

f (4)∗B =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α +

1
8
(νA − 1)2 if 0 ⩽ r (4)A ⩽

7 + νA

8
α − 2(1 − r (4)A )2

+
(1 − νA)(1 − r (4)A )

2
if

7 + νA

8
⩽ r (4)A ⩽ 1

Proof. With Lemmas 10 and 11, Theorem 9 is true. □

We now move to Alice’s optimal actions in round 4.
From Theorem 9 we know that Bob will always exert high
effort in round 4. In other words, Alice will assume ẽ(4)B = 1
when calculating her maximal expected payoff in round
4. We therefore find that Alice will exert high effort and
report as 1 in round 4 no matter what Bob reports in
round 3.

Theorem 10. If high efforts bring net rewards and α >

max{ (1−νA)2

2 ,
ν2A
2 }, Alice’s optimal action set in round 4 is

(e(4)∗A , r (4)∗A ) = (1, 3r(3)B +1
4 ), and the optimal expected payoff

score of round 4 is E[π
(4)∗
A (r (3)B )] = α +

1
8 (r

(3)
B − 1)2.

Proof. Consider Alice’s function of expected payoff scores
in round 4 as f (4)A :

f (4)A =E[π
(4)
A (r (3)B , a(4)A )]

=α(e(4)A )2 +

(
3 · r (3)B + νAe

(4)
A + (1 − νA)ẽ

(4)
B

)(
r (4)A − r (3)B

)
+ 2

(
(r (3)B )2 − (r (4)A )2

)
.

(31)

Furthermore, inserting ẽ(4)B = 1 into the equation above
gives:

f (4)A = α(e(4)A )2 +

(
3 · r (3)B + νA · e(4)A + (1 − νA)

)(
r (4)A − r (3)B

)
+ 2

(
(r (3)B )2 − (r (4)A )2

)
.

(32)

To find the value of f (4)∗A , we need to check the Hessian of
function f (4)A :

∇
2f (4)A (e(4)A , r (4)A ) =

⎡⎢⎢⎢⎢⎣
∂2f (4)A

∂(e(4)A )2
∂2f (4)A

∂e(4)A ∂r (4)A

∂2f (4)A

∂r (4)A ∂e(4)A

∂2f (4)A

∂(r (4)A )2

⎤⎥⎥⎥⎥⎦
=

[
2α νA

νA −4

]
.
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Table 8
KKT points of f (4)B in case 4.

e(4)B r (4)B f (4)B

0 r (4)A +
1
8 (νA − 1) 1

32 (1 − νA)2

1 r (4)A +
1
8 (1 − νA) α +

1
8 (1 − νA)2

r(4)A (1−νA)
2α 0 −2(r (4)A )2 +

r(4)A
2 (1 − νA) +

(1−νA)2

4α (1 −
r(4)A
2 )

0 0 −2(r (4)A )2 +
r(4)A
2 (1 − νA)

0 1 −2(r (4)A )2 + 4r (4)A − 2 −
(1−νA)(1−r(4)A )

2 ⩽ 0

1 0 −2(r (4)A )2 −
(1−νA)r

(4)
A

2 + α ⩽ α

1 1 α − 2(1 − r (4)A )2 +
(1−νA)(1−r(4)A )

2

Table 9
KKT points of f (4)A in case 4.

e(4)A r (4)A f (4)A

0 3r(3)B +1−νA
4

1
8 (r

(3)
B + νA − 1)2

1 3r(3)B +1
4 α +

1
8 (r

(3)
B − 1)2

νAr
(B)
B

2α 0 r (3)B (νA − r (3)B − 1) −
(νAr

(3)
B )2

4α

0 0 r (3)B (νA − 1 − r (3)B )

0 1 (1 − r (3)B )(r (3)B − 1 − νA)

1 0 α − r (3)B (1 + r (3)B )

1 1 α − (1 − r (3)B )2

We find that the Hessian of f (4)A is also an indefinite
matrix, because the value of its first principle minor is
positive as 2α > 0, and that of its second principle minor
is negative as −8α − ν2

A < 0. Table 9 reports the KKT
points of f (4)A and the corresponding function values. We
find that f (4)A is maximized as f (4)∗A = α +

1
8 (r

(3)
B − 1)2 when

(e(4)A , r (4)A ) = (1, 3r(3)B +1
4 ). Thus, Theorem 10 is true. □

Consider Bob in round 3. From Theorems 9 and 10 we
have e(4)∗A = e(4)∗B = 1. Knowing ẽ(4)A = ẽ(4)B = 1, we get the
expression of Bob’s expected payoff score in round 3 as f (3)B :

f (3)B =α · (e(3)B )2

+

(
3r (3)A − 0.5(1 − νA) + νA

+ (1 − νA) · (e(3)B + 1)
)

×

(
r (3)B − r (3)A

)
+ 2

(
(r (3)A )2 − (r (3)B )2

) (33)

Lemma 12. If high efforts bring net rewards and α >

max{ (1−νA)2

2 ,
ν2A
2 }, then

(e(4)∗B , r (4)∗B )

=

⎧⎪⎨⎪⎩(1,
3r (3)B + 1

4
+

1
8
(1 − νA)), if 0 ⩽ r (3)B ⩽

5 + νA

6
(1, 1), if

5 + νA

6
⩽ r (3)B ⩽ 1

Table 10
KKT points of f (3)B + δ · f (4)∗B in case 4 when r (3)B ⩽

5+νA
6 .

e(3)B r (3)B f (3)B + δ · f (4)∗B

0 3
4 r

(3)
A +

1
8 (νA + 1) 1

8 r
(3)
A (r (3)A − 1 − νA) +

1
32 (νA + 1)2

+δ(α +
1
8 (νA − 1)2)

1 3
4 r

(3)
A +

3−νA
8 α +

r(3)A
8 (r (3)A + νA − 3) +

(νA−3)2

32

+
9
8 + δ(α +

1
8 (νA − 1)2)

r(3)A (1−νA)
2α 0 −(r (3)A )2 −

r(3)A (νA+1)
2 −

(r(3)A )2(1−νA)2

4α

+δ(α +
1
8 (νA − 1)2)

0 0 −r (3)A (r (3)A +
νA+1

2 ) + δ(α +
1
8 (νA − 1)2)

1 0 α − r (3)A (r (3)A +
3−νA

2 ) + δ(α +
1
8 (νA − 1)2)

f (4)∗B =

⎧⎪⎨⎪⎩
α +

1
8
(1 − νA)2 if 0 ⩽ r (3)B ⩽

5 + νA

6

α +
3(1 − r (3)B )(3r (3)B − νA − 2)

8
if

5 + νA

6
⩽ r (3)B ⩽ 1.

Proof. According to Theorem 10, we know that r (4)∗A =

3r(3)B +1
4 . Taking this along with the statement of Theorem 9,

we infer Lemma 12. □

Lemma 13. If α > max{ (1−νA)2

2 ,
ν2A
2 } and r (3)A ⩽

7νA+11
18 , then

(e(3)∗B , r (3)∗B ) = (1, 3
4 r

(3)
A +

3−νA
8 ) and

E[π
(3)∗
B (r (3)A )] = α +

r (3)A

8
(r (3)A + νA − 3) +

(νA − 3)2

32
+

9
8

+ δ(α +
1
8
(νA − 1)2).

Proof. We know from Lemma 12 that f (4)∗B is obtained as
f (4)∗B = α +

1
8 (1 − νA)2 when r (3)B ⩽

5+νA
6 , and obtained as

f (4)∗B = α +
3(1−r(3)B )(3r(3)B −νA−2)

8 when r (3)B ⩾
5+νA

6 .
We begin by discussing the situation where f (4)∗B is a

constant as f (4)∗B = α +
1
8 (νA − 1)2 when r (3)B ⩽

5+νA
6 .

Similarly, we denote the KKT points of f (3)B + δ · f (4)∗B in
Table 10. We find that when r (3)A ⩽

7νA+11
18 , f (3)B + δ · f (4)∗B

is maximized as α +
r(3)A
8 (r (3)A + νA − 3) +

(νA−3)2

32 +
9
8 +

δ(α +
1
8 (νA − 1)2), which we denote as E[π

(3)
B (r (3)A , a(3)B )],

when (e(3)B , r (3)B ) = (1, 3
4 r

(3)
A +

3−νA
8 ).

Next, we discuss the situation where f (4)∗B is a function

of r (3)B as f (4)∗B = α +
3(1−r(3)B )(3r(3)B −νA−2)

8 , if r (3)B ⩾
5+νA

6 . Using
the same method, we find that f (3)B + δ · f (4)∗B is maximized

as α +
r(3)A
2 (3−2r (3)A )+ νA(r

(3)
A −1)−1

2 +α(1+ δ) at (e(3)B , r (3)B ) =

(1, 1).
By routine calculations, we know that the first expres-

sion of f (3)B + δ · f (4)∗B is larger than the value of the second

expression. Thus,E
[
π

(3)∗
B (r (3)A )

]
is achieved asα+

r(3)A
8 (r (3)A +

νA − 3) + (νA−3)2

32 +
9
8 + δ(α +

1
8 (νA − 1)2) at (e(3)∗B , r (3)∗B ) =

(1, 3
4 r

(3)
A +

3−νA
8 ). So Lemma 13 is true. □
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Lemma 14. If α > max{ (1−νA)2

2 ,
ν2A
2 } and r (3)A ⩾

7νA+11
18 , then

(e(3)∗B , r (3)∗B ) = (1, 1) and

E
[
π

(3)∗
B (r (3)A )

]
= α +

r (3)A

2
(3 − 2r (3)A ) +

νA(r
(3)
A − 1) − 1

2
+ α(1 + δ).

Proof. The proof is similar to that of Lemma 13, so the
details are omitted. □

Given the two cases for Bob’s equilibrium decisions in
round 3, we may now determine Bob’s round 3 decisions:

Theorem 11. If high efforts bring net rewards and α >

max{ (1−νA)2

2 ,
ν2A
2 }, then

(e(3)∗B , r (3)∗B )

=

⎧⎪⎨⎪⎩
(1,

3
4
r (3)A +

3 − νA

8
), if 0 ⩽ r (3)A ⩽

7νA + 11
18

(1, 1), if
7νA + 11

18
⩽ r (3)A ⩽ 1

f (3)∗B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α +
r (3)A

8
(r (3)A + νA − 3) +

(νA − 3)2

32

+
9
8

+ δ(α +
1
8
(νA − 1)2), if 0 ⩽ r (3)A ⩽

7νA + 11
18

α +
r (3)A

2
(3 − 2r (3)A ) +

νA(r
(3)
A − 1) − 1

2

+ α(1 + δ), if
7νA + 11

18
⩽ r (3)A ⩽ 1.

Proof. With Lemmas 13 and 14, Theorem 11 is true. □

Consider Alice in round 3. FromTheorems 9–11we have
e(3)∗B = e(4)∗A = e(4)∗B = 1. Knowing ẽ(3)B = ẽ(4)A = ẽ(4)B = 1,we
get the expression of Alice’s expected payoff score in round
3 as f (3)A :

f (3)A = α

(
e(3)A

)2
+

(
2r (2)B + νA

(
e(3)A + 1

)
+ 2 (1 − νA)

)
×

(
r (3)A − r (2)B

)
− 2

(
r (3)A

)2
+ 2

(
r (2)B

)2
= α

(
e(3)A

)2
+

(
2r (2)B + νAe

(3)
A + 2 − νA

)(
r (3)A − r (2)B

)
− 2

(
r (3)A

)2
+ 2

(
r (2)B

)2
.

(34)

Theorem 12. If high efforts bring net rewards and α >

max{ (1−νA)2

2 ,
ν2A
2 }, then

(e(3)∗A , r (3)∗A )

=

⎧⎪⎨⎪⎩(1,
9r (3)B + 3

16
+

3 − νA

8
), if 0 ⩽ r (3)A ⩽

7νA + 11
18

(1, 1), if
7νA + 11

18
⩽ r (3)A ⩽ 1

f (3)∗A =

⎧⎪⎨⎪⎩
α +

1
8
(
3
4
r (3)A +

νA − 5
8

)2 if 0 ⩽ r (3)A ⩽
7νA + 11

18
α if

7νA + 11
18

⩽ r (3)A ⩽ 1.

Proof. According to Theorem 11, we know that:

r (3)∗B =

⎧⎪⎨⎪⎩
3
4
r (3)A +

3 − νA

8
, if 0 ⩽ r (3)A ⩽

7νA + 11
18

1, if
7νA + 11

18
⩽ r (3)A ⩽ 1.

Together with the statement of Theorem 10, we infer
Theorem 12. □

Finishing the proof algebraically is quite involved and
lengthy, and does not provide any further insights. As such,
we will finish the four-round case using a combinatorial
argument. So far, we know that, regardless of an agent’s
report, the actions of both Alice and Bob in rounds 3 and 4
will be to exert high efforts. We now consider Bob’s actions
in round 2. Being rational, he deduces that all subsequent
effort levels of all other agents, including himself, will be
high. Thus, from his perspective, at the end of round 2
he has no uncertainty regarding future effort levels, and
all past effort levels are already fixed. As such, his only
possible trade-off would be to exert low effort and lose
the reward from high effort, but make it up within in
the prediction market. If α is sufficiently high, then the
reward within the prediction market will be outweighed
by that from exerting high effort. Thus, assuming that α
is sufficiently high, Bob will exert high effort and report
truthfully.

Turning to Alice’s actions in round 2, we may apply
this same combinatorial argument again. Similarly,wemay
apply the same arguments to first Bob and then Alice in
round 1. In turn,we deduce that, for sufficiently high values
ofα, all agentswill exert high effort in all rounds and report
their beliefs truthfully.

5. Discussion and conclusion

We have shown that the cost actions that agents take
which determine the outcome of a prediction-market-
traded event have a great influence on the agents’ predic-
tion market and external behaviors. First in a two-round
setting and later in a four-round setting, we find that when
agents are forward-looking and want to maximize their
total expected payoffs from both exerting effort towards
realizing the traded event and trading in the prediction
market, asymmetric action costs result in agents avoiding
taking the costliest action. This observation implies that if
a market maker rewards her preferred action more than
a less-preferred action, agents will take the desired action
evenwhen a predictionmarket is present. We find that the
value of the net reward for each desirable action should be
larger than a certain amount, which is determined by the
value of νA in our two-round setting.3 It makes sense that
the reward for desirable actions must be sufficiently large,
as this avoids the ‘‘playing for peanuts’’ results (Harinck,
Van Dijk, Van Beest, & Mersmann, 2007; Weber & Chap-
man, 2005). Perhaps unexpectedly, when given sufficiently
high external rewards, agents will always report truthfully
during each prediction market round, even though their

3 Wedid not determine the exact threshold forα explicitly in the four-
round setting. Just as in the two-round setting, though, this threshold
exists and is a function of νA .
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actions are influenced by external costs. This observation
shows that the quadratic market scoring rule is incentive-
compatible even when external incentives are present, so
long as action costs are costly and the preferred action is
rewarded adequately.

In the past, decision and policy makers have expressed
concern that the existence of a prediction market will
inspire undesirable actions for agents who are trading in
the prediction market, especially when these agents have
a direct impact on deciding the likelihood of the predicted
event, as is the case in corporate settings. However, pre-
vious research has not taken into account the potential
payoffs (either net costs or net rewards) to the agents who
take such actions. We base our research on the assumption
that forward-looking agents will wish to maximize their
total expected payoffs, not only from the prediction mar-
ket, but also from their actions related to the traded event.
Our finding enables market makers who care about the
result of the traded event to give agents an incentive to take
desirable actions. More importantly, our results address
the concern that firms may have regarding deploying a
prediction market within their organization, as we have
shown that the existence of such a market will not induce
participants to change their behavior outside the market,
assuming that they are compensated appropriately. Amar-
ket maker can also gain accurate and true information
about agents’ actions from the same agents’ reports in the
prediction market, as the regular market scoring rule is
incentive-compatible.

Here,we set a range for the expectedpayoff scores of ex-
erted efforts, the absolute value of which should be larger
than a certain value in each round, in order to provide an
incentive for the desired actions and truthful reports. We
do not discuss whether or not the prediction market will
still be incentive-compatible when this range is violated.
However, we do show that when efforts are not costly
actions (the payoff scores for exerted efforts are zero),
agents will bluff in the prediction market, a well-known
existing result. More importantly, we set the number of
rounds (T ) here to either two or four, which guarantees our
assumption that agents are forward-looking. However, we
still need to extend ourmodel to a finite round setting,with
T being a large number, in order to determine whether our
conclusion still holds. In addition, the result that we have
presented considered only the quadratic market scoring
rule. By the nature of our result, the logarithmic market
scoring rule cannot be used to verify our result. However,
it is not clear whether there are other scoring rules that
may be used, with the particular question being raised:
what members of the large class of scoring rules intro-
duced by Gneiting and Raftery (2007) restore incentive
compatibility when external incentives are present? The
results of our paper should not be applied blindly, but
we hope that this study will encourage laboratory and
field experiments that can determine whether incentive
compatibility is restored when the cost of external actions
is considered. We view the results presented here as a
first step in incorporating the costs of external actions into
the prediction markets that are used within corporations
today.
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Appendix. Notation

α constant that represents the cost (re-
ward) for efforts; we assume 0 < α ⩽ 2.

i number of rounds, i = 1, . . . , T .
r (i)A the reported prediction probability of

E occurring in round i if the report
has already been made by Alice, r (i)A ∈

[0, 1], r (i)A
= 1 − r (i)A .

r (i)B the reported prediction probability of E
occurring in round i if the report has al-
ready been made by Bob, r (i)B ∈ [0, 1], r (i)B
= 1 − r (i)B .

r̃ (i)A the reported prediction probability of E
occurring in round i if the report has not
yet been made by Alice.

r̃ (i)B the reported prediction probability of E
occurring in round i if the report has not
yet been made by Bob.

r (0)B the beginning market estimate set in the
prediction market by the market maker.

e(i)A value of Alice’s effort in round i if the ef-
fort action has already happened: e(1)A =

1 if Alice devotes high effort in round i,
otherwise 0, e(i)A = 1 − e(i)A .

e(i)B value of Bob’s effort in round i if the effort
action has already happened: e(1)B = 1 if
Bob devotes high effort in round i, other-
wise 0, e(i)B = 1 − e(i)B .

ẽ(i)A value of Alice’s future effort in round i if
the effort action has not yet taken place.

ẽ(i)B value of Bob’s future effort in round i if
the effort action has not yet taken place.

EA(ẽ
(i)
B ) the expectation of Bob’s future effort

value of round i perceived by Alice when
she reports in round i.

a(i)A the action set that Alice takes in round i,
a(i)A = (e(i)A , r (i)A ).

a(i)∗A the optimal action set that Alice takes in
round i, a(i)A = (e(i)∗A , r (i)∗A ).

aA the policy that Alice takes for all rounds,
aA := (a(1)A , . . . , a(T )A ).

a∗

A the optimal policy for Alice, a∗

A := (a(1)∗A ,

. . . , a(T )∗A ).
A(i)

A the action set that Alice has in round i,
a(i)A ∈ A(i)

A .
AA the whole action set that Alice has,AA =

A(1)
A × · · · × A(i)

A and aA ∈ AA.
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a(i)B the action set that Bob takes in round i,
a(i)B = (e(i)B , r (i)B ).

a(i)∗B the optimal action set that Bob takes in
round i, a(i)∗B = (e(i)∗B , r (i)∗B ).

aB the policy that Bob takes for all rounds,
aB := (a(1)B , . . . , a(T )B ).

a∗

B the optimal policy for Bob, a∗

B := (a(1)∗B ,

. . . , a(T )∗B ).
A(i)

B the action set that Bob has in round i,
a(i)B ∈ A(i)

B .
AB the whole action set that Bob has, AB =

A(1)
B × · · · × A(i)

B and aB ∈ AB.
h(i)
A number of high efforts Alice has exerted

in total from rounds 1 to i, h(0)
A = 0.

h(i)
B number of high efforts Bob has exerted in

total from rounds 1 to i, h(0)
B = 0.

νA Alice’s impact on deciding the likelihood
of project E occurring, 0 < νA < 1.

p(i)A Alice’s belief on the likelihood of E occur-
ring in round i after she observes Bob’s
most recent report and before she takes
any action in that round, taking into ac-
count actions in future rounds.

p(i)B Bob’s belief on the likelihood of E occur-
ring in round i after he observes Alice’s
most recent report and before he takes
any action in that round, taking into ac-
count actions in future rounds.

ρ
(i)
e (·) function of payoff scores of efforts de-

voted in round i.
ρ
(i)
s (·) function of payoff scores earned from

moving the probability in the prediction
market in round i if E occurs (succeeds)
after T rounds.

ρ
(i)
f (·) function of payoff scores earned from

moving the probability in the prediction
market in round i if E does not occur
(fails) after T rounds.

δ discounting factor on the future profits,
0 < δ < 1.

π
(i)
A payoff scores earned by Alice from

rounds i to T , including scores earned in
this round and discounting future scores.

π
(i)
B payoff scores earned by Bob from rounds

i to T , including scores earned in this
round and discounting future scores.

I (i)A the system state that Alice has in round i
after she observes Bob’s most recent re-
port in the prediction market but before
she takes any actions in that round.

E[π (i)
A (I (i)A , a(i)A )] the expected value of π

(i)
A if the current

state is I (i)A and the current round’s action
set is a(i)A .

E[π (i)∗
A (I (i)A , a(i)A )] the optimal expected value of π

(i)
A given

the current state I (i)B .
I (i)B the system state that Bob has in round i

after he observes Alice’s most recent re-
port in the prediction market but before
he takes any action in that round.

E[π (i)
B (I (i)B , a(i)B )] the expected value ofπ (i)

B given if the cur-
rent state is I (i)B and the current round’s
action set is a(i)B .

E[π (i)∗
B (I (i)B , a(i)B )] the optimal expected value of π

(i)
B given

the current state I (i)B .
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