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ABSTRACT
We consider a two-stage, multi-server queueing network that serves two types of customers,
which we refer to as type a and type b. Type a customers require service at both sequential
stages and type b customers only require service at the second stage. The first stage has one node
and the second stage has multiple nodes. Type a customers possess a higher non-pre-emptive
priority than type b customers. Depending on the model application, two goals are explored: the
first goal is to allocate type a customers to the second- stage nodes in a manner that minimizes
the average blocking delay; the second goal is to optimize the service speed of each server in the
second stage so that the average blocking delay experienced by type a customers is minimized.
In this paper, we develop an approximation scheme and an iterative algorithm to find stationary
policies, which we then apply to the real-world contexts of Emergency Medical Services planning
and airline staffing. Numerical examples show that, compared to some typical heuristic schemes
(e.g., proportional allocation based on arrival/service capacity), the suggested allocation policies
result in type a customers experiencing shorter delays and allow more of them receive service.
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1. Introduction

The research on workload allocation in queueing net-
works has been driven by different applications. The
objective of workload allocation usually depends on the
characteristics of the specific application. In Flexible
Manufacturing Systems, for example, the decision is
concerned with how to allocate work among groups of
flexible machines in order to avoid bottlenecks in the
system (Calabrese, 1992). In multi-facility production
systems, a decision- maker decides how to assign work
to machines in a way that minimizes the total work-in-
process inventory (Benjaafar & Gupta, 1999). Likewise,
in a Local AreaNetwork, the system administrator allo-
cates data files to multiple servers in order to minimize
the overall system response time (Lee & Park, 1995).
This work is motivated by an application in Emergency
Medical Services (EMS). In this application, a decision-
maker decides on how to allocate patients arriving by
an ambulance to regional emergency rooms such that
patient delays due to blocking are minimized. Addi-
tionally, this model is also applied to staffing decisions
for special service employees at gates in an airport. In
this setting, a decision-maker decides on staff allocation
given the demand rate and resources available at each
gate.

In this paper, we consider a two-stage, multi-server
queueing network that serves two types of customers,
whichwe refer to as type a and type b. Type a customers
receive service at stage one before being allocated to one
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of the K nodes at stage two. If all stage-one servers are
busy, then the customer is lost. There is no queue be-
tween stage one and stage two for type a customers and
servers at stage one can be blocked if there is no server
available at stage two to serve type a customers. Type b
customers require service at one of the K nodes in the
second stage only. In order to reduce the frequency of
blocking in the first-stage servers, type a customers are
assigned a higher non-pre-emptive priority than type
b customers. In this model, the decision-maker’s goal
is to minimize the total blocking delays experienced
by type a customers by efficiently allocating those who
finish service at stage one to one of the K nodes at stage
two.

Themodel has applications in different areas such as
ambulance dispatching, call centre routing, airport gate
service. In the context of ambulance dispatching, EMS
ambulances are responsible for transferring patients
to Emergency Departments (EDs) on a regional basis.
Sometimes, upon arriving at a highly congested ED,
an ambulance must wait for a bed to become avail-
able before being able to offload the patient. On the
other hand, the ED must also serve patients who arrive
by themselves (i.e., walk-in patients). Baker, Clayton,
and Taylor (1989) developed a non-linear integer op-
timization model to allocate EMS ambulances to sec-
tors within a county. Their model objective is to meet
government-mandated response-time criterion. How-
ever, in this work, our objective is to minimize the total
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offload delays experienced by the EMS ambulances. In
a call centre setting, there are high-priority calls that
are served on a common server and then routed to
different severs to continue processing. In an airport
gate setting, there are regular passengers and special
needs passengers: while regular passengers are able to
get to the gates by themselves, special needs passengers
require additional service to do so.

There is a considerable amount of literature on
the analysis of blocking in queueing networks when
one or more nodes have multiple servers (e.g.,
Andriansyah, Van Woensel, Cruz, & Duczmal, 2010;
Cruz & Smith, 2007; Gelenbe, Pujolle, & Nelson, 1998;
Han&Smith, 1991; Jain& Smith, 1994; Stidham, 2009).
While many existing works consider general topology
networks, there are some papers that analyse special
queueing networks, such as tandem queues consisting
of two or more nodes (e.g., Akyildiz, 1989; Latouche
& Neuts, 1980; van Vuuren, Adan, & Resing-Sassen,
2005). Almehdawe, Jewkes, and He (2013) studied a
multi-server network with customer service priority.
As such, the queueing network in this paper was mo-
tivated by the study of the EMS model considered in
Almehdawe et al. (2013) and Almehdawe, Jewkes, and
He (2016). In Almehdawe et al. (2016), two approxima-
tions were developed: the first approximation provides
a computation method for performance measures, and
the second provides explicit results that can be used
to optimally allocate patients arriving by an ambulance
(which we refer to thereafter as ambulance patients).
These approximation methods work well under the
condition that the probability of losing high-priority
ambulance patients (i.e., type a customers) is close to
zero. In this paper, we present an allocation problem
and develop an iterative algorithm that optimizes both
the allocation probabilities of high-priority customers
in the first stage and resource allocation in the sec-
ond stage. The iterative algorithm is based on two ap-
proximation models of the queueing network; thus,
the results obtained in this paper are approximate in
nature. This work features three main differences when
compared to Almehdawe et al. (2016). First, in the
present work, we assume that first-stage service time
is dependent on the destination node decision, whereas
it was assumed to be independent in Almehdawe et al.
(2016). Thismakes the currentmodelmore realistic; for
example, in an EMS setting, the time to reach the desti-
nation ED is dependent on its location. Second, unlike
Almehdawe et al. (2016), our approximation method
works significantly better when the loss probability of
type a customers is not close to zero. Third, we explore
a different optimization problem that is relevant to the
airport staffing applications. In addition to optimizing
the allocation policy, we also optimize the second-stage
service rate which is an issue that was not considered in
Almehdawe et al. (2016).

The rest of the paper is organised as follows. In
Section 2, we introduce the queueing system of interest
and describe the steps for model approximation and
the optimization problems. In Sections 3 and 4, we
define and analyse two queueing models for the ap-
proximation. In Section 5, two optimization problems
and an iterative scheme are introduced for optimiz-
ing allocation probabilities and service rates. Section
6 presents two applications (an EMS application and
an airport staffing application) with some numerical
analysis. Finally, Section 7 concludes the paper.

2. The queueing network

We consider a multi-server queueing network that
serves two types of customers: type a and type b. The
network consists of two stages: stage one, which only
serves type a customers and stage two, which serves
both type a and type b customers. Stage one consists
of a single multi-server node and stage two consists of
K multi-server nodes. The structure of the network is
illustrated in Figure 1, and the service process and flow
of customers can be described as follows.

• When a type a customer arrives to the system, the
customer first receives service at stage one provided
a server is available; if a server is not available, the
customer is lost. Upon arrival at stage one, the type a
customer is assigned to one of the K nodes hereafter
referred to as destination nodes at stage two. The
service time for the customer at stage one depends
on the destination node. If a server in the destina-
tion node is available, the customer moves to that
node to receive service at stage two once they have
received service at stage one; if all servers are busy,
the customer has to wait in stage one until a server at
the destination node becomes available. The period
of time that a server at stage one is occupied – that
is, unavailable to serve other type a customers – is
called blocking delay. After receiving service at stage
two, the type a customer leaves the system.

• Type b customers join the network in one of the K
nodes at stage two. A type b customer who arrives
to node k starts service if there is a server available
at node k. Otherwise, the customer waits in a queue
with infinite capacity.

• In order to reduce blocking in the first-stage servers,
we assign type a customers higher non-pre-emptive
priority over type b customers. Thus, once a server in
a node becomes available, the server begins to serve
a blocked type a customer who has been allocated to
that node, if there is one. Customers of the same type
are served on a first-come-first-served basis.

The above described queueing network can be de-
fined explicitly as follows.
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Figure 1. The queueing network of interest.

Customer arrival processes: We assume that cus-
tomers arrive independently to the network according
to Poisson processes with parameters λa and {λk, k =
1, 2, . . . ,K}, for type a and type b customers, respec-
tively.

Customer service time at stage one: Stage-one
service times for type a customers are dependent on
their destination nodes at stage two. This relationship
assumption would be useful when stage-one service
time is used to model, for example, the transportation
time to Emergency Rooms (See Example 6.2). If more
than one customer has the same destination node, then
they will have the same service time distribution and
will be served on a FCFS basis. We assume that the
service time is exponentially distributedwith parameter
μT ,k, for k = 1, 2, . . . ,K and T stands for transporta-
tion time.

Allocation probabilities:Upon arrival, a type a cus-
tomer is allocated to one of the K nodes at stage two
with probabilities {pk, for k = 1, 2, . . . ,K}.

Customer service time at stage two: Weassume the
service time at stage two is exponentially distributed
with parameter μk, for k = 1, 2, . . . ,K , regardless of
customer type.

Service capacity: Weuse c1 to represent the number
of servers at stage 1, and c2,k for the number of servers
in node k at stage two, for k = 1, 2, . . . ,K .

Service priority: We assume that type a customers
possess higher non-pre-emptive priority over type b
customers. That is, if a server in node k becomes avail-
able, it will first be assigned to a type a customer who is
allocated to node k but is presently blocked. However,
service to a type b customer will not be interrupted by
the arrival of type a customers.

In this paper, we are concerned with how to most
effectively allocate type a customers to the K nodes
at stage two. Our objective is to find a method of al-
locating type a customers to each node of stage two
that minimizes total blocking delays at stage one. Due
to the complexity of the system (e.g., c1 and {c2,k, k =
1, 2, . . . ,K} can be large), an exact analysis of the system
is prohibitive (see examples in Almehdawe et al., 2013,

2016). We take an approximation approach and de-
velop an iterative algorithm to find an allocation of type
a customers that strikes a balance between blocking
delays and loss probability of type a customers. Fur-
thermore, we develop an optimization problem with
the objective of minimizing the average blocking delays
experienced at stage one. We also consider whether av-
erage blocking delays can be minimized by distributing
service resources among the K nodes at stage two.

To develop the iterative algorithm, we introduce
an approximation scheme for the present queueing
system by decomposing the original network depicted
in Figure 1 into individual nodes. This leads to K +
1-isolated nodes each with adjusted effective param-
eters. We name these nodes as Node 0 (which
represents the stage 1 node) and Node 1 (which
represents each node at stage two) and they can be
described as follows:

• Node 0 considers only type a customers. In total,
there are c1 servers serving type a customers. The
service time at each server depends on which stage-
two node the customer will be allocated to. A server
can either be busy due to serving a customer, or
holding the customer if the downstream node at
stage two is full (blocked). If a server is available,
the customer enters the server and begins to receive
service upon arrival; otherwise, the customer is lost.
By considering servers not blocked, and assuming
there are n of them, we approximately model Node
0 as an M/M[K]/n/n queue, which will be defined
and analysed explicitly in Section 3. The service time
in the M/M[K]/n/n queue is the service time at
stage one plus the blocking delay. This model is used
to estimate the effective total arrival rate of type a
customers into the nodes at stage two.

• Node 1 represents individual nodes at stage two. At
each node, the two types of customers are served
based on a non-pre-emptive priority service disci-
pline. Approximately, we model Node 1 as an
M[2]/M/c non-pre-emptive priority queue, which
will be defined and analysed in Section 4. This model
is used to estimate the blocking delays of stage-one
servers and the distribution of the number of type a
customers experiencing blocking delay (which is also
the number of blocked servers at stage one).

Node 0 (i.e., stage one) and node 1 (i.e., stage two)
are not independent. In fact, both Node 0 and Node
1 cover the blocking delay part (i.e., the number of
occupied servers in the M/M[K]/n/n queue and the
number of waiting type a customers in the M[2]/M/c
queue). On the other hand, the two nodes are analysed
independently. Thus, our analysis in Section 5 gives
approximate results. In Section 6, we use two applica-
tions related to EMS planning and airline staffing to
demonstrate how the queueing networks developed in
this paper can be applied in real-world settings.

328 E. ALMEHDAWE ET AL.



3. Node 0 and theM/M[K]/n/n queue

According to the description of Node 0 given in
Section 2, theM/M[K]/n/nqueue is defined as follows.
• There are in total n identical servers.
• Type a customers arrive according to a Poisson
process with parameter λa.

• An arriving customer will receive type k service (i.e.,
allocated to the kth node in the queueing network)
with probability pk, for k = 1, 2, . . . ,K .

• The service time of a customer who receives type k
service has an exponential distribution with param-
eter μT ,k. (We note that μT ,k will be modified to
μT ,k =: 1/(E[Wa,k] + 1/μT ,k) to include the effect
of blocking delays in the iterative algorithm to be
introduced in Section 5.)

• If all n servers are busy, an arriving type a customer
is lost.

Let qa,k(t) be the number of type a customers who
are receiving type k service at time t. Then {(qa,1(t), . . . ,
qa,K (t)), t ≥ 0} is a continuous-time Markov chain
(CTMC) with state space {(n1, . . . , nK ) : n1 + · · · +
nK ≤ n, nk ≥ 0, k = 1, 2, . . . ,K}. If K = 1, the queue-
ing model is reduced to the classical Erlang loss model
M/M/n/n. Similar to the M/M/n/n queue, we show
that {(qa,1(t), . . . , qa,K (t)), t ≥ 0} is time-reversible
and, consequently, we find its limiting probabilities
{π(n1, . . . , nK ), n1 + · · · + nK ≤ n, nk ≥ 0, k =
1, 2, . . . ,K}.
Theorem 1: The CTMC {(qa,1(t), . . . , qa,K (t)), t ≥ 0}
is time-reversible and its limiting probabilities are
given by:

π(n1, . . . , nK ) = π(0, . . . , 0)
K
�
k=1

ρ
nk
k
nk! ,

for n1 + · · · + nK ≤ n, nk ≥ 0,
k = 1, 2, . . . ,K , (1)

where ρk = λapk/μT ,k, for k = 1, 2, . . . ,K, and

π(0, . . . , 0)

=
⎛
⎝ ∑

(n1,...,nK ): n1+···+nK≤n, nk≥0, k=1,2,...,K

K
�
k=1

ρ
nk
k
nk!

⎞
⎠

−1

.

(2)

The proof of Theorem 1 is shown in Appendix 1.

Note: The theorem holds if the K services of customers
arrive according to K independent Poisson processes.

A type a customer is lost if there is no server at
stage one available at his arrival epoch. Let πloss,n be
the loss probability of an arbitrary arriving type a
customer.

Corollary 1: The type a customer’s loss probability
πloss,n is given by:

πloss,n = π(0, . . . , 0)

×
⎛
⎝ ∑

(n1,...,nK ): n1+···+nK=n, nk≥0, k=1,2,...,K

K
�
k=1

ρ
nk
k
nk!

⎞
⎠.

(3)

The departure rate of customers at stage one who are
allocated to the kth node is pkλa(1 − πloss,n), for k =
1, 2, . . . ,K.

The proof of Corollary 1 is shown in Appendix 1.
Computation of πloss,n can be done efficiently as

follows. Since there are c1 servers at stage one in the
original queueing network, the number of servers n is
less than or equal to c1. Thus, we computeπloss,n forn =
0, 1, . . . , c1. Let x(k, n) = 1/π(0, . . . , 0) and y(k, n) =
πloss,n/π(0, . . . , 0) for the M/M[k]/n/n queue. Then
x(k, n) and y(k, n) can be computed as:

x(1, 0) = 1, x(1, n) = x(1, n − 1) + ρn
1
n! ,

for n = 2, 3, . . . , c1;

x(k, n) =
n∑

i=0

x(k − 1, n − i)
ρi
k
i! ,

for 2 ≤ k ≤ K , 0 ≤ n ≤ c1;
y(1, 0) = 1, y(1, n) = ρn

1
n! ,

for n = 2, 3, . . . , c1;

y(k, n) =
n∑

i=0

y(k − 1, n − i)
ρi
k
i! ,

for 2 ≤ k ≤ K , 0 ≤ n ≤ c1. (4)

Then, we obtain the following result.
Corollary 2: The loss probability πloss,n can be
obtained as πloss,n = y(K , n)/x(K , n), for
n = 0, 1, . . . , c1.

4. Node 1 and theM[2]/M/c non-pre-emptive
priority queue

Node 1 represents individual second-stage nodes,
which was used in Almehdawe et al. (2016). For no-
tational convenience, we remove the subscript k from
each variable and use more generic notation for the
M[2]/M/c queue, which is defined explicitly as follows.

• Type a customers arrive according to a Poisson pro-
cess with parameter pλa(1−πloss), where p is for the
allocation probability pk, and πloss is the total loss
probability of type a customers.

• Type b customers arrive according to a Poisson pro-
cess with parameter λ, which is independent of the
type a customers’ arrival process.
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• The service time of a customer, regardless of its type
(a or b), has an exponential distribution with param-
eter μ.

• There are c identical servers.
• Type a customers have non-pre-emptive service pri-
ority over type b customers.

We want to find the waiting times of the two types
of customers, especially, the waiting time of type a
customers. Denote byWa the waiting time in the queue
of an arbitrary type a customer (i.e., a high-priority
customer) and Wb the waiting time in the queue of
an arbitrary type b customer (i.e., a low- priority cus-
tomer). Let σ = pλa(1−πloss)/(cμ) and ρ = (pλa(1−
πloss)+λ)/(cμ) = σ +λ/(cμ), where σ represents the
node utilisation by the high-priority customers and ρ

represents the node overall utilisation. If ρ < 1, it is well
known that (see Gross, Shortle, Thompson, & Harris,
2008):

E[Wa] = 1
1 − σ

(
c!(1 − ρ)cμ

c−1∑
n=0

(
cρ
)n−c

n! + cμ

)−1

;

E[Wb] = 1
(1 − ρ)

E[Wa]. (5)

The mean waiting time of type a customers E[Wa]
is used to approximate the average blocking delay. The
functionE[Wa]will be used in anoptimizationproblem
in Section 5, where the following properties play an
important role.

Theorem 2 (Lemma 1 in Almehdawe et al. (2016)):
The function E[Wa] is increasing convex in p.

Theorem 3: Function E[Wa] is a decreasing convex
function in μ.

The proof of Theorem 3 is shown in Appendix 1.
The distribution of the number of blocked type a

customers can be found explicitly. Although distribu-
tions of the queue lengths for the M[2]/M/c non-pre-
emptive priority queue have been given in a number of
papers (e.g., Gail, Hantler, & Taylor, 1988), simple and
explicit results cannot be found. Next, we present an
explicit result. Let

• q1(t) be the number of all customers in service plus
all waiting type a customers and

• q2(t) the number of waiting type b customers.

Then {(q1(t), q2(t)), t ≥ 0} is a continuous-time
Markov chain (CTMC). If q1(t) ≤ c − 1, we must have
q2(t) = 0.Thenwedenote the state space of theMarkov
chain as {0, 1, . . . , c − 1} ∪ {(i, j), c ≤ i ≤ c + n, j ≥
0}. Let {η0, η1, . . . , ηc−1, η(i,j), c ≤ i ≤ c + n, j ≥ 0}
be the limiting probabilities of the Markov chain. It is
easy to see that the limiting probabilities exist if and
only if pλa(1 − πloss) + λ < cμ. To find the limiting
probabilities, wefirst establish a set of balance equations
for them:

(pλa(1 − πloss) + λ)η0 = μη1;
(pλa(1 − πloss) + λ + iμ)ηi

= (pλa(1 − πloss) + λ)ηi−1

+ (i + 1)μηi+1, 1 ≤ i ≤ c − 2;
(pλa(1 − πloss) + λ + (c − 1)μ)ηc−1

= (pλa(1 − πloss) + λ)ηc−2 + cμη(c,0);
(pλa(1 − πloss) + λ + cμ)η(c,0)

= (pλa(1 − πloss) + λ)ηc−1 + cμ(η(c+1,0) + η(c,1));
(pλa(1 − πloss) + λ + cμ)η(c,j)

= λη(c,j−1) + cμ(η(c+1,j) + η(c,j+1)), j ≥ c;
(pλa(1 − πloss) + λ + cμ)η(i,0)

= pλa(1 − πloss)η(i−1,0)

+ cμη(c+1,0), c + 1 ≤ i ≤ c + n;
(pλa(1 − πloss) + λ + cμ)η(i,j)

= pλa(1 − πloss)η(i−1,j) + λη(i,j−1)

+ cμη(c+1,j), c + 1 ≤ i ≤ c + n, j ≥ 1. (6)

Using the equations for i = 0, 1, . . . , c − 1, we obtain

ηi = η0
(cρ)i

i! , for 0 ≤ i ≤ c − 1;

η(c,0) = η0
(cρ)c

c! . (7)

Let ηi = ∑∞
j=0 η(i,j), for i ≥ c. Using the equations

in (6), we obtain

(pλa(1 − πloss) + λ)ηc = (pλa(1 − πloss) + λ)ηc−1

+ cμηc+1 − cμη(c,0);
(pλa(1 − πloss) + cμ)ηi = pλa(1 − πloss)ηi−1

+ cμηi+1, for c + 1 ≤ i ≤ c + n. (8)

Using the relationship between ηc−1 and η(c,0), the
above equations lead to

ηi = ηcσ
i−c , for i ≥ c. (9)

Using Equation (1) in Gail et al. (1988), which is es-
tablished by computing the mean number of working
servers at an arbitrary time, and the law of total proba-
bility, the following linear system for η0 and ηc can be
established:

(c−1∑
i=0

i
i! (cρ)i

)
η0 + c(1 − σ)−1ηc = cρ;

(c−1∑
i=0

1
i! (cρ)i

)
η0 + (1 − σ)−1ηc = 1. (10)
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Solving the linear system, we obtain

η0 = c(1 − ρ)∑c−1
j=0

(c−j)
j! (cρ)j

and ηc = (1 − σ) 1
(c−1)! (cρ)c∑c−1

j=0
(c−j)
j! (cρ)j

.

(11)
Since the number of waiting type a customers

(blocked) is given by ql = max{0, q1(t) − c}, its distri-
bution can be obtained as follows.
Corollary 3:

P{ql = 0} =
c∑

i=1

ηi = 1 −
σ

(c−1)! (cρ)c∑c−1
j=0

(c−j)
j! (cρ)j

;

P{ql = i} =
(
1 − σ

) 1
(c−1)! (cρ)cσ i∑c−1

j=0
(c−j)
j! (cρ)j

, for i = 1, 2, . . . .

(12)
The distribution of ql is used to estimate the number

of stage- one servers that are blocked.

5. Two optimization problems

It is well known that server blocking significantly
deteriorates the performance of service systems. In-
stead of utilising the upstream node limited capacity
for serving the high-priority type a customers, some of
the servers at stage one are used as waiting spots for
those customers who finished service but cannot join
the destination node, since all servers in that node are
in service. In queueing networks, this type of block-
ing is referred to as Blocking After Service (BAS), see
Perros (1994), for more details on BAS and other types
of blocking. We use blocking delays as a measure for
the network performance which we try to minimize
by either allocating the type a customers to stage-two
nodes properly, or by deciding on the service speed
at the second-stage nodes. In our model, “properly”
means that the optimization problem output will result
in smaller average blocking delays for the system in the
long run.

For both optimization problems considered, our ob-
jective is to find the decision variables that will result
in minimum average blocking delays. To obtain the
average blocking delays of an arbitrary type a customer
who received service at stage one, allK nodes have to be
considered simultaneously. We assume that the actual
total arrival rate of type a customers to the K nodes is
λa(1 − πloss), where πloss is the loss probability of type
a customers, which can be estimated by using Equation
(3). Then the actual arrival rate of type a customers to
the kth node is pkλa(1− πloss). For the kth node, recall
that (i) the number of servers is c2,k; (ii) the service rate
is μk; and (iii) the arrival rate of type b customers is λk.
In Equation (5), we add subscript k to quantities Wa,
μ, ρ, c and p. Then an expression for the mean waiting
time of type a customers (i.e., the average blocking
delays) in the kth node can be obtained from Equation

(5). Consequently, the average blocking delays of stage-
one servers can be obtained as the weighted average:∑K

k=1 pkE[Wa,k].

5.1. Optimization problem 1: Load allocation
optimization

In this subsection, we focus on developing an optimiza-
tion problem in which we find proper allocation prob-
abilities to allocate the high-priority customers from
stage 1 to stage 2. To minimize the average blocking
delays, we first make sure that type a customers block-
ing delays in front of individual stage-two nodes are
finite. This can be achieved only if (i) individual stage-
two nodes have enough capacity to serve all type a
customers arrived to them; and (ii) the system have
enough capacity to serve all type a customers who are
not lost. Part (i) is equivalent to assume that σk <
1, where σk = (pkλa(1 − πloss))/(c2,kμk), for k =
1, 2, . . . ,K . This condition on {σk, k = 1, 2, . . . ,K}
restricts the choices of allocation probabilities. In fact,
feasible allocation probabilities (i.e., pk ≥ 0, for k =
1, 2, . . . ,K , and

∑K
k=1 pk = 1) exist to ensure σk < 1

for k = 1, 2, . . . ,K , if and only if

1 ≤
∑K

k=1 c2,kμk

λa(1 − πloss)
=

K∑
k=1

p(max )

k , (13)

where p(max )

k = c2,kμk/(λa(1 − πloss)). If the condi-
tions hold, then the set of feasible allocation probabil-
ities {(p1, . . . , pK ) : 0 ≤ pk ≤ p(max )

k , k = 1, . . . ,K ,∑K
k=1 pk = 1} is not empty. To ensure condition (13),

we must have πloss ≥ π
(min )

loss , where

π
(min )

loss = max

{
0, 1 −

∑K
k=1 c2,kμk

λa

}
. (14)

We are ready to propose the following optimization
problem to find allocation probabilities {p1, . . . , pK }
that minimize the average blocking delays:

min
p1,...,pk

K∑
k=1

pkE[Wa,k] =
K∑

k=1

pk
1 − σk

×
⎛
⎝c2,k!(1 − ρk)c2,kμk

c2,k−1∑
n=0

(
c2,kρk

)n−c2,k

n! + c2,kμk

⎞
⎠

−1

(15)

s.t.
K∑

k=1
pk = 1; (16)

0 ≤ pk ≤ p(max )
k , for k = 1, 2, . . . ,K . (17)

where ρk = σk + λk/(c2,kμk), for k = 1, 2, . . . ,K . We
note that, if we are concerned about the waiting time
of type b customers (to be finite), then we must mod-
ify p(max )

k as p(max )

k = (c2,kμk − λk)/(λa(1 − πloss)),
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for k = 1, 2, . . . ,K . Note that optimization problem
(15)–(17) was introduced in Almehdawe et al. (2016).

By Theorem 2, the objective function (15) is convex
in {σ1, . . . , σK } and, consequently, convex in
{p1, . . . , pK }. All constraints (16)–(17) are linear. Thus,
the optimization problem is a convex program, which
can be solved effectively by existing methods. For the
numerical examples presented in Section 6, we solve the
above optimization problem using the fmincon solver
in Matlab where the interior-point algorithm is used.

Since πloss depends on the optimal allocation prob-
abilities, we propose an iterative scheme to find a sta-
tionary solution for the system. The iterative scheme
consists of two stages: (i) estimation of the total effec-
tive arrival rates of type a customers to the stage-two
individual nodes; and (ii) optimization of allocation
probabilities and the distribution of the total number
of servers blocked at stage one.

(1) Assume that the allocation probabilities are
{p1, p2, . . . , pK } and the distribution of the total
number of blocked type a customers B is ξ =
(ξ(0), ξ(1), ξ(2), . . . , ξ(c1)). Since there are only
c1 servers at stage one, we can have at most c1
blocked type a customers. Thus, we must have
B ≤ c1. We use the M/M[K]/n/n queue to find
the loss probability of type a customers and the
effective type a customer arrival rates to individual
stage-two nodes. Specifically, given that B = b,
we use the M/M[K]/(c1 − b)/(c1 − b) queue to
find loss probability πloss,c1−b (see Equation (3)),
for b = 0, 1, 2, . . . , c1. Conditioning on B, the loss
probability of type a customers can be found as:

πloss =
c1∑
b=0

ξ(b)πloss,c1−b. (18)

The effective arrival rates of type a customers to
individual nodes can be found as pkλa(1 − πloss),
for k = 1, 2, . . . ,K .

(2) In theM[2]/M/c non-pre-emptive priority queue,
πloss affects the determination of themeanblocking
delays. Given πloss and other original network pa-
rameters, we solve the optimization problem (15–
17) to obtain solutions {p∗

k , k = 1, . . . ,K} and
{E[W∗

a,k], k = 1, . . . ,K}. We also find the distri-
butions of the servers blocked qb,k, which is given
by (12), for individual stage-two nodes. Then the
total number of blocked stage-one servers can be
found as B = min{c1, qb,1 + qb,2 + · · · + qb,K }.

A solution {πloss, pk, k = 1, 2, . . . ,K} is called a
stationary solution if (i) Given πloss, the solution of op-
timization problem (15)–(17) is {pk, k = 1, 2, . . . ,K};
and (ii) Given {pk, k = 1, 2, . . . ,K}, the distribution
of B, and {E[Wa,k], k = 1, 2, . . . ,K}, then (18) gives
πloss. A solution {πloss, pk, k = 1, 2, . . . ,K} is called

a consistent solution if {pk, k = 1, 2, . . . ,K} is applied
in the original queueing system, the loss probability of
type a customers is πloss.

Intuitively, a stationary solution gives consideration
to both customer blocking delays and customer loss.
For a (non-stationary) solution, if πloss is big, then the
average blocking delays can be small since there are
less type a customers to stage- two nodes. On the other
hand, if the average blocking delays are small, then πloss
is small since there are more type a customers arriving
to the network. This observation indicates that, it is
possible to find a stationary solution by using the above
two steps iteratively. Thus, to find a stationary solution,
we introduce an iterative scheme involving the above
two steps.
An Iterative Scheme for Computing a Stationary So-
lution Summarising the above discussion, the iterative
scheme can be stated as follows.

(0) Input system parameters: λa, {μT ,k, c2,k,μk, λk,
k = 1, 2, . . . ,K}. Choose ε > 0. Set πloss(1) =
π

(min )

loss and n = 1.
(1) Given πloss(n), compute {p(max )

k (n), k =
1, 2, . . . ,K}. Solve the optimization problem (15–
17) to find (p∗

1(n), . . . , p∗
K (n)).

(2) Use (p∗
1(n), . . . , p∗

K (n)) and Equation (5) to calcu-
late {E[W∗

a,k](n), for k = 1, 2, . . . ,K}. Use Corol-
lary 3 to find the distributions of qb,k, for k =
1, 2, . . . ,K , and the distribution of B = min{c1,
qb,1 + · · · + qb,K }.

(3) Use {p∗
k(n), E[W∗

a,k](n), k = 1, 2, . . . ,K}, the dis-
tributionofB, theM/M[K]/c1/c1 queue, andEqua-
tion (3) to calculate πloss(n + 1). Reset πloss(n +
1) =: max{πloss(n + 1), π

(min )

loss }. Note that the
rate of type k service is 1/(1/μT ,k + E[W∗

a,k](n)).
(4) If |πloss(n + 1) − πloss(n)| < ε, stop; otherwise, set

n =: n + 1 and go to step 1.

5.2. Optimization problem 2: Capacity allocation
optimization

Another optimization problem considered in this work
is to find the optimal service speed for each server in
stage two. Our objective is to minimize the average
blocking delays experienced by the high -priority cus-
tomers. We propose the following optimization prob-
lem to find {μ1,μ2, . . . ,μK }:

min
μ1,...,μk

K∑
k=1

pkE[Wa,k] =
K∑

k=1

pk
1 − σk

×
⎛
⎝c2,k!(1 − ρk)c2,kμk

c2,k−1∑
n=0

(
c2,kρk

)n−c2,k

n! + c2,kμk

⎞
⎠

−1

(19)

s.t.
K∑

k=1
ckμk = μtotal (20)
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Table 1. Parameters for Example 6.1.

k μT ,k c2,k λk μk

1 1/2 30 3.6 1/6
2 1/2 32 4.5 1/5
3 1/3 34 4.3 1/5

where μtotal corresponds to the total service capacity
available at stage two. By Theorem 3, the objective
function in (19) is convex in {μ1,μ2, . . . ,μK }. The
constraint (20) is linear. Thus, similar to optimiza-
tion problem 1, this optimization problem is a convex
program, which can be solved effectively by existing
methods. To find a stationary solution, we use the iter-
ative algorithm of Section 5.1 by adjusting for the new
decision variables. In the next section, we illustrate how
the above two optimization problems can be utilized in
two different applications and show some numerical
examples.

6. Model applications and numerical examples

In this section, We utilize our queueing network to
explore two applications: a health care application and
an airline staffing application. We validate the approx-
imation scheme through simulation and then apply it
to a real case. For all the simulations in the following
examples, we use a discrete event simulation package
(Simul8) to estimate performance measures. The num-
bers in parentheses are the 95% confidence interval
lengths that were generated by 100 runs each with a
simulation time of 100,000 h and a warm-up period of
200 h.
Example 6.1: To demonstrate the applicability of the
queueing network model developed in this paper, we
consider an application in health care systems. More
specifically, we focus on the dispatching decisions of
EMS ambulances to regional EDs. In some countries,
such as Canada, it is a common practice to have an
ambulance wait outside an ED if it is full and cannot
accept care of the patient. This type of ambulance de-
lay is referred to as an offload delay. It is well known
that ambulance offload delays affect EMS performance
significantly. Ambulance offload delays can be reduced
by adjusting the allocation of ambulance patients to
regional EDs based on the prospective congestion and
capacity of a given ED. See Almehdawe et al. (2016),
Laan, Vanberkel, Boucherie, and Carter (2016) and
Carter et al. (2015) for more details on this problem.

In the current queueingmodel, the first-stage servers
represent the EMS ambulances and the second-stage
nodes represent regional EDs. So, for a region that is
served by three hospitals, K = 3. The high- prior-
ity customers are the patients arriving by an ambu-
lance who require service in both, the ambulance and
later in the ED. Conversely, the low-priority customers

are the patients who arrive at the ED by themselves.
We refer to this group of customers as walk-in pa-
tients. In this context, the objective is to select alloca-
tion probabilities (the allocation policy) that minimize
the average offload delays experienced by ambulance
patients.

Analysis of a real EMS case. For this case, we con-
sider a network that consists of a single EMS provider
and three hospitals (i.e., K = 3). We set λa = 4.5 and
c1 = 15. Table 1 provides the detailed data for the rest of
the EMS-EDnetwork parameters. First, we solve for the
optimal allocation policy using the iterative algorithm
developed earlier in Section 5.We find that the optimal
policy for this example is (22.60%, 33.73%, 43.67%).
The reported results in Table 2 achieve two objectives:
first, to compare the approximation via decomposi-
tion approach performance with simulation. Second,
to check the efficiency of our optimal solution by com-
paring the performance of the EMS-ED network under
our optimal allocation policy to its performance under
a common allocation policy. The common allocation
policy is based on the contribution of each ED capacity
to the total regional capacity. Namely, we set pk =

c2,kμk∑K
k=1 c2,kμk

, which is (p1, p2, p3) = (27.47%, 35.16%,

37.36%) for this example. The performance measures
under the two allocation policies are recorded in
Table 2.

Based on Table 2, we are able to make the following
observations:

• The results for the approximation via decomposition
for the high-priority ambulance patients (E[Ŵa,k])
are within 10% to the simulation results (E[Wa,k]).
While the walk-in patients results from the approx-
imation scheme (E[Ŵk]) are within 17% of the sim-
ulation results (E[Wk]).

• The common allocation policy only considers the
capacity contribution of an ED with respect to the
region’s total capacity. However, our allocation pol-
icy takes into consideration the arrival rates of low-
priority patients and the other sources of ED con-
gestion in addition to each ED capacity. For that
reason, we notice that total expected offload (block-
ing) delays are lower using ourmethodology (0.1058
compared to 0.1141) corresponding to a 7.28% de-
crease.

• Based on the iterative algorithm allocation policy,
the three EDs are loaded such that the ED utili-
sation is balanced (between 90.12% and 92.41%).
However, this is not true for the common allocation
policy where the ED utilisation is between 86.41%
and 95.13%.

• The low-priority walk-in patients who choose to go
to ED1 are expected to experience long waiting time
(3.71 h on average) under the common allocation
policy.However, under our stationary allocationpol-
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Table 2. Simulation and optimization results for Example 6.1.

Stationary allocation policy Common allocation policy

k k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

pk 22.60% 33.73% 43.67% 27.47% 35.16% 37.36%
E[Wa,k ] 0.1239 0.1101 0.0853 0.1822 0.1234 0.0565

( ± 0.0024)∗ ( ± 0.0013) ( ± 0.0010) ( ± 0.0031) ( ± 0.0017) ( ± 0.0010)
E[Ŵa,k ] 0.1290 0.1163 0.0944 – – –
E[Wk ] 1.3740 1.4180 0.8472 3.7855 1.9264 0.4028

( ± 0.0636) ( ± 0.0500) ( ± 0.0277) ( ± 0.2499) ( ± 0.0937) ( ± 0.0147)
E[Ŵk ] 1.4664 1.5919 0.9930 – – –
ρk 90.90% 92.41% 90.12% 95.13% 93.85% 86.41%∑

pkE[Wa,k ] 0.1024 0.1145

* For simulation results, the half-length of the 95% confidence interval is presented.

icy, their expected delays are cut by more than 50%
(1.36 h).Although the expectedwaiting timeofwalk-
in patients in ED3 increases, overall, the expected
waiting time of walk-in patients decreases signifi-
cantly overall.

• At the regional level, an arbitrary walk-in patient
can expect delays of 1.83 h under the common allo-
cation policy, whereas they would only experience a
delay of 1.16 h under the stationary allocation policy.
Even though the main objective of this model is to
minimize waiting times for high-priority patients,
we observed that the mean waiting time for walk-
in patients decreased substantially when the optimal
allocation policy was used.

Example 6.2: The second application of the queueing
model considered in this paper relates to staffing deci-
sions in an airport. In this setting, there are two types of
passengers: regular passengers and special needs pas-
sengers. Regular passengers are able to get to their
gates by themselves (type b customers). Special needs
passengers (type a customers) are helped to their gates
by special staff. At each gate, several staff members are
available to serve the passengers. Special staff can only
leave the gate only if the gate personnel can serve the
special needs passenger (e.g., help them get seated). The
issue of interest here is not to optimize {p1, p2, . . . , pK };
rather, it is to optimize {μk, k = 1, 2, . . . ,K} for given
{p1, p2, . . . , pK }.

Analysis of an airport staffing case.For this case, we
consider a terminal that consists of five gates (K = 5).
We set λa = 2.5 and c1 = 15. Table 3 provides detailed
information for the rest of the network input parame-
ters. We set μtotal = 20 and the routing probabilities
to {0.09, 0.36, 0.18, 0.27, 0.09}. Table 4 summarises the
results for the optimal service rate policy based on the
optimization problem in (19) and (20). We also report
the expected waiting time for high and low-priority
customers for the stationary policy. Based on Table 4,
we make the following observations:

• Comparing the decomposition approach results for
waiting time with the simulation results show the va-
lidity of our approach tomimic the original network.

Table 3. Parameters and results for Example 6.2.

k μT ,k c2,k λk pk

1 1/2 5 2.6 1/11
2 1/2 4 2.5 4/11
3 1/3 3 2.0 2/11
4 1/3 5 3.3 3/11
5 1/3 4 2.3 1/11

• Gate 1 and Gate 4 have the same number of servers.
However, we notice that, based on our optimization
model, the suggested service speed at Gate 4 should
be about double that of Gate 1 (μ4 = 1.0193 com-
pared to μ1 = 0.6457). This is because the low-
priority customer arrival rate at Gate 4 is higher
(λ4 = 3.3 compared to λ1 = 2.6). Additionally,
the high-priority customer arrival rate at the same
gate is higher (3/11 ∗ λa(1 − πloss) compared to
1/11 ∗ λa(1 − πloss)).

• Gate 2 and Gate 5 have the same number of servers,
but we notice that Gate 2 suggested service speed
(μ2 = 1.2708) should be much higher than Gate 5
(μ5 = 0.7537). This is due to the fact that the arrival
rate of high-priority customers at Gate 2 is triple that
of Gate 5.

• Ifwe compare the resulting utilisations of the optimal
service speed policy for each gate, we notice a con-
siderable variation in congestion between the gates.
Furthermore, we notice that each gate’s utilisation
is inversely related to the total load on the corre-
sponding gate (from both high- and low-priority
customers). We can explain this as follows: when the
load is high at a given gate, the servers at that gate
should work much faster than those at other gates to
decrease the total blocking delays. One managerial
insight from this could be to always assign more
workers to gates with higher customer flows. Even
though some less-congested gates might experience
longer delays, the total average delays could be lower
using this rule of thumb. This observation actually
motivates our future research, which is touched on
in the following section.
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Table 4. Simulation and optimization results for Example 6.2.

k k = 1 k = 2 k = 3 k = 4 k = 5

μk 0.6457 1.2708 1.1921 1.0193 0.7537
E[Wa,k ] 0.2338 0.0918 0.1482 0.1173 0.2342

( ± 0.0102) ( ± 0.0041) ( ± 0.0051) ( ± 0.0040) ( ± 0.0046)
E[Ŵa,k ] 0.2361 0.0919 0.1512 0.1173 0.2391
E[Wk ] 1.7895 0.2835 0.4877 0.5296 1.4320

( ± 0.1836) ( ± 0.0214) ( ± 0.0268) ( ± 0.0217) ( ± 0.1082)
E[Ŵk ] 1.8967 0.2787 0.4816 0.5357 1.4771
ρk 87.56% 67.03% 68.61% 78.10% 83.81%

7. Conclusion

This paper investigated a load allocation problem for
a two-stage queueing network model that serves two
types of customers. The proposed solution is based on
the development of approximations for the network
andusing the explicit but approximate results forNodes
0 and1. In the end, an iterative algorithmwas developed
for computing a stationary allocation policy that strikes
a balance between the average blocking delays and the
loss probability of the high-priority (type a) customers.
Through numerical experiments, we showed that the
stationary policy improved the performance of the sys-
tem in terms of both average blocking delays and loss
probability of type a customers.

One major application for the queueing network
analysed in this paper relates to EMS dispatching deci-
sions. The optimal allocation policy derived from this
model can be used by EMS dispatchers as a guide-
line in establishing long-term targets. Furthermore, it
can also be used in other application areas such as
call centres, hospital bed management, airport staffing
management.

To find the optimal allocation policy, this work fo-
cused only on blocking delays related to high-priority
customers.However, fromapractical perspective, there
is usually a service level constraint for low-priority cus-
tomers to make sure that they are not severely delayed
because of the optimal allocation policy. To that end,
we would like to conduct future research that explores
how to include a performance metric for low-priority
customers into the model. In addition, we are also
interested in investigating how the inclusion of this
performancemetric would affect the optimal allocation
policy.

A key step in the iterative solution approach pro-
posed in this paper is to approximate the loss proba-
bility of ambulance patients in Node 0. In the current
model, an M/M[K]/n/n queue is utilized, in which
the mean service time is modelled as the sum of the
mean transportation time and the mean waiting time
in Node 1. Since the Laplace–Stieltjes transform (LST)
of the waiting time of ambulance patients in Node 1
can be found (see Kella & Yechiali, 1985), the ser-
vice time distributions of customers in Node 0 can be

found. Consequently, Node 0 can be modelled as an
M/G[K]/n/n queue. Apparently, this approach may
yield a better approximation to the loss probability,
which is yet to be found. Alternatively, we can use the
LSTof thewaiting time tomodify the service rates in the
(currently used)M/M[K]/n/n queue so as to improve
the approximation to the loss probability. Thus, an
interesting future research problem is to find approxi-
mations obtained by those methods, and to compare
the quality of those approximations under different
congestion rates.

Another broader area of future research arising from
this work is related to the concept of reserved capacity.
Instead of minimizing high-priority customers’ delays,
we are interested in investigating what effect reserved
capacity at the second stage has on the whole network
performance, and in finding the optimal reserved ca-
pacity decisions at each node required to achieve target
performance measures.
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Appendix 1.

Proof of Theorem 1: Since the Markov chain is irreducible and has a finite number of states, it is ergodic and its limiting
probabilities exist. It is well known that the proofs of time-reversibility of a Markov chain and the existence of the lim-
iting probabilities of the Markov chain can be obtained simultaneously. Consider any two states (n1, . . . , nk , . . . , nK ) and
(n1, . . . , nk + 1, . . . , nK ). It is easy to see that the transition rate from state (n1, . . . , nk , . . . , nK ) to (n1, . . . , nk + 1, . . . , nK ) is
λapk , and μT ,k(nk + 1) from (n1, . . . , nk + 1, . . . , nK ) to (n1, . . . , nk , . . . , nK ). Then it is easy to verify that

λapkπ(n1, . . . , nk , . . . , nK ) = (nk + 1)μT ,kπ(n1, . . . , nk + 1, . . . , nK ), (A1)

for all states (n1, . . . , nK ) and k. Since {π(n1, . . . , nK ), n1 + · · · + nK ≤ N , nk ≥ 0, k = 1, 2, . . . ,K} given in Equation (1) is
summed up to one, it is the unique limiting distribution of the Markov chain, and the Markov chain is time-reversible. �
Proof of Corollary 1: The expression for πloss,n is obtained by definition. The expression for the departure rate of type a
customers who are allocated to the kth node is also intuitive, yet a simple formal proof can be obtained easily. By definition,
the departure rate of received type k service is given by:

∑
(n1,...,nK ): n1+···+nK≤n, nj≥0, j=1,2,...,K

π(n1, . . . , nK )nkμT ,k

= π(0, . . . , 0)

⎛
⎝ ∑

(n1,...,nK ): n1+···+nK≤n, nj≥0, j=1,2,...,K

nkμT ,k

(
K
�
j=1

ρ
nj
j

nj!

)⎞
⎠

= π(0, . . . , 0)

⎛
⎝ ∑

(n1,...,nK ): n1+···+nK<n, nj≥0, j=1,2,...,K

(
K
�
j=1

ρ
nj
j

nj!

)⎞⎠ λapk

=
⎛
⎝ ∑

(n1,...,nK ): n1+···+nK<n, nj≥0, j=1,2,...,K

π(n1, . . . , nK )

⎞
⎠ λapk

=
⎛
⎝1 −

∑
(n1,...,nK ): n1+···+nK=n, nj≥0, j=1,2,...,K

π(n1, . . . , nK )

⎞
⎠ λapk

= pkλa(1 − πloss,n).

(A2)

�
Proof of Theorem 3: First, we rewrite E[Wa] as:

E[Wa] = 1
c(μ − pλa(1 − πloss)/c)

1(
1 + c!(1 − a/c)

∑c−1
n=0

an−c

n!
) = 1

c
f1(μ)f2(a), (A3)

where a = cρ. Note that f2(a) is the Erlang C function, which is increasing and convex in a, i.e., f
′
2 < 0 and f

′′
2 > 0. Let

f3(μ) = f2((λ + pλa(1 − πloss))/μ). It is clear that f3(μ) is decreasing in μ, i.e., df3(μ)/dμ < 0. Further, we have

d2f3(μ)

dμ2 = d2f2(a)
da2

(−(λ + pλa(1 − πloss))

μ2

)2
+ df2(a)

da
2(λ + pλa(1 − πloss))

μ3 ≥ 0. (A4)

Therefore, f3(μ) is a decreasing convex function in μ. It is clear that f1(μ) is decreasing convex in μ. Note that E[Wa] =
f1(μ)f3(μ)/c. Combining the properties of f1(μ) and f3(μ), it is easy to see that E[Wa] is decreasing in μ. Since the second
derivative of E[Wa] with respect to μ is given by (f

′′
1 f3 + f1f

′′
3 + 2f

′
1 f

′
3)/c, which is nonnegative, therefore, E[Wa] is decreasing

convex in μ. This completes the proof. �
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