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ABSTRACT
In service industries such as restaurants and tourism, empirical
findings show that uninformed customers may consider queues
as a signal of service quality and choose to join a longer queue.
Service managers become aware of this phenomenon and stimu-
late customer purchase by maintaining a queue. In this paper, we
explore issues related to the balance between herding and con-
gestion for service systems using a state-dependent queue. In our
model, the herding effect is represented by system idle probabil-
ity (as opposed to system busy probability) and the congestion is
represented by a non-decreasing function of queue length. An
optimization problem with the objective of minimizing the long-
run average cost and constraints on traffic intensities is formu-
lated, and the structure of its optimal solution is characterized.
Further, we find closed-form solutions of the optimal state-
dependent traffic intensity and the optimal service rate switching
state, and characterize the relationship between the optimal solu-
tion and system parameters. Through a series of propositions and
numerical examples, we gain insight into the balance between
stimulation of herding effect and reduction of customer waiting,
and propose that service managers should intentionally slow
down when the queue is short and operate at their full speed
when the queue is long.
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1. Introduction

For the past years, Service Science as a burgeoning discipline has attracted the atten-
tion of scholars and practitioners. It may appear, then, that no stone in the service-
management garden has been left unturned, not to mention analyzed, polished and
replaced (Chase and Dasu 2001). However, there is one thing carved on the stone
that is unturned: customers are not simply consumers of the service but can also be
an integral part of production (Frei 2008).

The main function of a service system is to deliver services to customers (Chan
and Gao 2013). Duration of service delivery is a primary measure for service quality
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and a long queue could be a nuisance. This is true for food industries and also true
for almost all service systems if we simply consider customers as service receiver.
However, temporal aspects of service encounters are subtle. Maglio, Kieliszewski, and
Spohrer (2010) wrote “if OM sees its main function as moving customers in and out of
the service facility as quickly as possible then the quality of the service delivered from a
customer’s standpoint may suffer.” (Note: OM stands for operations management.)
Large queues can be interpreted as a proxy for higher quality (Bitran, Ferrer, and
Rocha e Oliveira 2008). From a manager’s standpoint, queues can be used for product
branding. For example, the New York Times and the Los Angeles printed articles
about the lines outside a nightclub Studio 54 stretching around the block, which only
served to make them longer. More examples come from food industries, such as the
line outside Keizo Shimamoto the Brooklyn ramen burger booth in the summer of
2013 and the Manhattan Dominique Ansel Bakery in January 2014 (Mordfin 2014).
Xishaoye, a fast-food chain founded by Chinese young entrepreneurs, strategically
applied this tactic to sell their burgers (Zhao 2014).

In service systems such as restaurants, a long queue usually implies better service
quality and hence stimulates herding effect on uninformed customers, or empty res-
taurant syndrome (see Debo and Veeraraghavan (2009); Kremer and Debo (2012);
Veeraraghavan and Debo (2011)). Lu (2013) suggested that a long queue might
induce more customers to join the queue. Raz and Ert (2008) reported that queue
length has impact on consumer’s choice among restaurants, even those local ones
that may be familiar to customers. In restaurants, service time is prolonged to attract
more customers. When there are few customers, it is a good time to increase revenue:
under low workload waiters and waitress increase service time to make cross-selling
and up-selling attempts (see Aksin, Armony, and Mehrotra (2007); Tan and
Netessine (2014)). This phenomenon is typical in industries where queues can be a
signal of service quality, such as in restaurant industry and tourism (Hernandez-
Maskivker, Ryan, and del Mar P�Amies Pallis�e 2012).

On the other hand, waiting in a congested environment can have a negative
impact on customer experiences. As a result, there is a trade-off in service systems,
where herding and congestion allude to contradictory ideas in operational strategy.
To understand the dilemma, we explore the issue from a queueing perspective by
optimizing an objective function under a certain cost structure, which incorporates
waiting cost induced by congestion and idle cost induced by herding. Maglio,
Kieliszewski, and Spohrer (2010) addressed that “Note that some resources may incur
a cost only when they are actively in use by a service process, but others may contribute
to the cost of the SDS even when idle.” (Note: SDS stands for service delivery system.)

To thoroughly discuss the above issue, we analyze a related optimization problem
based on a queueing model with state-dependent control policy. Here, the state-
dependent control policy is associated with the arrival rate and/or the service that can
be adjusted according to information about the queue length. In this way, we try to
reach the objective of balancing herding and congestion. We show that it is usually
necessary to adjust the state-dependent traffic intensity in order to minimize the
long-run average cost. It is also shown that even if we are provided with the state-
dependent traffic intensity at many possible levels, we only need two levels of traffic
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intensity: low traffic intensity (low arrival rate or high service rate) and high traffic
intensity (high arrival rate or low service rate) to achieve the minimum costs.
Findings in this paper are consistent with the phenomena in reality where “herding”
in restaurants is present.

The remainder of this paper is organized as follows. In Section 2, a literature
review on the study of related queueing models is conducted. The problem of interest
is introduced in Section 3, which includes a queueing model, costs involved, and an
optimization problem for which the structure of the optimal solution is characterized.
In Section 4, we analyze two optimization problems for the selection of (state-
dependent) traffic intensity and the switching state, and for the impact of system
parameters on the optimal solution, respectively. Section 5 presents a number of
numerical examples to gain insight into the problem of interest. Section 6 concludes
the paper. Proofs of all propositions and theorems are collected in the Appendix.

2. Literature review

Studies on how a service system with state-dependent productivity (or service rate in
a queueing system) is controlled, operated and performed are versatile and interdis-
ciplinary. Our study is closely related to three streams of literature: 1) optimal control
and design in queueing models; 2) cost calibration; and 3) herding behavior and
state-dependent productivity in behavioral operations regime.

The literature on the control and design of a queueing system extensively explores
various combinations of cost structure and objective functions and related optimal
policies (for surveys one can refer to Crabill, Gross, and Magazine (1977); Sobel
(1974); Stidham (1974); Stidham and Weber (1993)). Three major types of costs are
usually considered: customer waiting cost, server operating cost, and service rate
switching cost. The trade-off among them is the main issue to address both in the
design and control of queueing systems. In the area of optimal design of queues, for
example, Grassmann, Chen, and Kashyap (2001) suggested to adjust the service rate
to optimize the waiting cost and operating cost in an M/G/1 system with a state-
dependent arrival rate. Batta, Berman, and Wang (2007) addressed the trade-off
between staffing cost and switching cost. More literature can be found in the area of
optimal control of queues. For example, Yadin and Naor (1967) considered an M/M/
1 system with variable service rates. They studied the joint distribution of phase and
queue length induced by a hysteretic state-dependent policy without assumption of
any cost function. Lippman (1975) introduced the optimal control of the service rate
in an M/M/1 queue, where cost is incurred for the used proportion of the potential
service rate and showed that the optimal service rate is increasing in the queue
length. Later on, numerous studies such as Weber and Stidham (1987), Stidham and
Weber (1989), and George and Harrison (2001) considered a cost function with non-
decreasing holding cost and proposed monotone policies.

Moreover, there is another line of optimal control problems focusing on the policy
of adjusting the number of servers in a multi-server queueing system. Jain (2005)
considered an M/M/r/K queue, where a server is always open while extra servers
become open only when the queue length exceeds certain thresholds. Two types of
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costs (i.e., waiting cost and operating cost) are considered. The paper develops a
method for computing the long-run average cost for the system with a given policy
and some performance measures. The paper provides a set of inequalities that opti-
mal thresholds have to satisfy and demonstrates them with numerical examples. In
general, none of the existing work explicitly explores the trade-off between the system
idle cost and customer waiting cost. We would like to point out that idle cost can
arguably be considered as special cases of operating cost or waiting cost. However,
these costs were generally assumed to be non-decreasing with service rate or queue-
length (see Crabill (1972); Sabeti (1970); Lippman (1975)). As a result, the cost struc-
ture of our objective function is different from models in the existing literature.

The idea of introducing the balance of idleness and waiting is originated from
scheduling and planning in healthcare problems such as outpatient scheduling, in
which the reduction of idle cost and waiting cost is the core issue. For an introduc-
tion of the cost structure in outpatient scheduling, one can refer to Cayirli and Veral
(2003) and Weiss (1990). Our proposed objective function is scarce in queueing mod-
els but is analogous to those in scheduling. On the other hand, the literature on
healthcare provides guidance on how to calibrate cost parameters. As Fries and
Marathe (1981) pointed out, it is easier to estimate the costs relative to the server,
which are usually available via standard cost accounting. Keller and Laughhunn
(1973) divided the annual salary of a doctor by the hours worked per year to estimate
patient waiting cost and used the minimum wage to reflect the opportunity cost of
the patient waiting time. Idle cost includes not only the cost of the idle doctor, but
also the cost of the idle facility (Yang, Lau, and Quek 1998). Same estimation of costs
can also be found in Gupta, Zoreda, and Kramer (1971). We note that there have
been experimental studies focusing on idle time and waiting time (Fetter and
Thompson 1966).

Literature in behavioral operations management regime (not related to queueing
model) shows that people have behaviors in contradiction with the classic non-
decreasing assumption. Schultz et al. (1998) first considered the issue of the state-
dependent productivity and provided a detailed review (Delasay et al. 2014). Kc and
Terwiesch (2009) performed a rigorous econometric analysis and managerially con-
sidered the increase in the pressure of hospitals to operate at very high levels of util-
ization. From the perspective of psychology, Hsee, Yang, and Wang (2010) suggested
idleness aversion behavior. Parkinson (1955) indicated that work expands so as to fill
the time available for its completion. The literature provides evidence to support that
people try to avoid idleness or low queue length for some reasons. Our findings con-
tribute to this line of literature of behavioral effects on productivity by providing
another explanation for why workers and/or organizations intentionally slow down
and avoid idleness.

The study on the herding effect is rich in economics literature. Herding behavior
in queues is generally explored from an information externality perspective (see Debo
and Veeraraghavan (2009); Veeraraghavan and Debo (2011)). Kremer and Debo
(2012) used a laboratory experiment to test theoretical results. Becker (1991) observed
that a popular seafood restaurant in Palo Alto had a long queue while another res-
taurant across the street did not. Hernandez-Maskivker, Ryan, and del Mar P�Amies

514 H. ZHANG ET AL.



Pallis�e (2012) gave an extensive survey on herding behavior in tourism industries. In
our study, we measure the cost of herding indirectly by using the system idle cost. In
this way, we emphasize the effect of idleness (as opposed to herding) on the design
and control of such queueing systems.

As demonstrated above, the literature on queueing control and analysis is mixed
with papers focusing on methods that can be used in practice and with papers focus-
ing on gaining insight into systems of interest. This paper focuses on the character-
ization of the optimal policy and the intrinsic relationship among system parameters
and solutions. The results can be pragmatically useful and provide a simple rule of
thumb to managers of service systems if they have calibrated cost parameters. We
would like to point out that our study is devoted to "prescribe” an optimal policy for
a state-dependent queueing system, while in queueing literature there are numerous
stochastic models developed to “describe” the properties and performances of the
queueing system, which are therefore not surveyed in this paper.

3. Problem formulation and a main result

We consider a state-dependent M/M/1 queue. The queueing model has a single queue
and a single server. Customers are served on a first-come-first-served basis. Customer
arrival rate and server service rate depend on the number of customers in the system
(i.e., the queue length). Let kn be the arrival rate and ln the service rate, if the queue
length is n.

Let q(t) be the queue length at time t. If q(t)¼ n� 0, the time to the next arrival,
if the queue length remains at n, has an exponential distribution with parameter kn;
and, if q(t)¼ n� 1, the time to the next service completion, if the queue length
remains at n, has an exponential distribution with parameter ln. It is easy to see that
fq(t), t� 0g is a continuous time Markov chain with infinitesimal generator

Q ¼

�k0 k0
l1 � k1 þ l1ð Þ k1

l2 � k2 þ l2ð Þ k2

. .
. . .

. . .
.

0
BBBBB@

1
CCCCCA (1)

It is well-known that the steady state distribution of fq(t), t� 0g, if it exists, is
given by

pn ¼ p0q1q2 � � � qn, n � 1;

p0 ¼ 1þ q1 þ q1q2 þ :::þ q1q2 � � � qn þ :::ð Þ�1,
(2)

where qn¼ kn–1/ln, for n¼ 1, 2, … , which shall be called the (state-dependent) traffic
intensities for server utilization. From now on, we represent the model and present
results in terms of fqn, n¼ 1, 2, … g, instead of fkn, n¼ 0, 1, 2, … g and fln, n¼ 1,
2, … g. Interpretation of results in terms of fkn, n¼ 0, 1, 2, … g and fln, n¼ 1, 2,
… g is given from time to time, though.
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In order to study the utilization-waiting conundrum, we introduce two types
of costs:

i. system idle cost CI per unit idle time; and
ii. customer waiting cost Cw(n) per unit time, where n is the queue length.

The long-run average cost (i.e., the expected total cost per unit time) is given by

TC qn, n � 1ð Þ ¼ CIp0 þ E Cw q tð Þ� �� � ¼ CIp0 þ
X1
n¼1

Cw nð Þpn: (3)

For given fCI, Cw(.)g, we want to find fq1, q2, … , qn, … g (or fk0, k1, … , kn,
… g and fl1, l2, … , ln, … g) to minimize the long-run average cost, under certain
constraints on fq1, q2, … , qn, … g. Based on the commonly used queueing control
schemes (e.g., Conway and Maxwell (1962) and Jain (2005)), we impose constraints
on fq1, q2, … , qn, … g. That is, we assume that the traffic intensities fqn, n¼ 1, 2,
… g would vary in queue length but become a constant after the queue length is
larger than a threshold. As a result, there are a finite number of choices for traffic
intensities, denoted by fc1, … , cKg, where K� 1 is a finite integer. We denote the
queue lengths at which the traffic intensity is switched by fq1, … , qK–1g. As the traf-
fic intensity hardly reaches zero, we assume that there is a lower bound of traffic
intensities cmin, i.e., minfc1, … , cKg � cmin � 0. We aim to find the optimal values
of fq1, … , qK–1g and fc1, … , cKg to minimize the long-run average cost given in
formula (3). The optimization problem can be formulated as follows:

TC� ¼ inff c1, :::, cKð Þ, q1, :::, qK�1ð ÞgfTC qn, n � 1ð Þg
s:t: : qn ¼ c1, for 1 � n � q1;

qn ¼ ck, for qk�1 < n � qk, k ¼ 2, :::,K � 1;

qn ¼ cK , for qK�1 < n < 1;

minfc1, c2, :::, cKg � cmin:

(4)

The above optimization problem is a mixed integer programming problem, which
can be solved numerically (J€unger et al. (2009)). In this paper, we use the optimiza-
tion problem (4) to explore the relationship between server utilization and customer
waiting and to gain insight into the balance between them. For that purpose, we first
find the structural properties of the optimal solution.

Theorem 1. Assume that Cw(n) is a nonnegative and non-decreasing function of n. For
given finite positive integer K, the optimal solution of (4) has the structure q2 ¼ q3 ¼
… ¼ qK–1 ¼ 1 and c2 ¼ c3 ¼ … ¼ cK ¼ cmin, i.e., qn ¼ c1, for 1� n � q1, and
qn ¼ cmin, for n > q1. w

Theorem 1 implies that the optimal solution of (4) is determined by four parame-
ters: K (¼ 1 or 2), c1, c2, and q1. The traffic intensity c1 is chosen properly to keep
the idle cost small (or to keep a proper queue length) and c2¼ cmin is required to
ensure that the queue length is not long. Intuitively, the trade-off between the idle
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cost and waiting cost can be achieved by having a short queue. Thus, ideally, the
queue should be shorter than or equal to q1. Hence, if the queue length is greater
than q1, we should set the traffic intensity as small as possible. The results provides
insight into the relationship between customer herding and server utilization. While
it is important to reduce the queue length to keep the waiting cost small, it is equally
important to maintain a proper traffic intensity (i.e., herding).

To end this section, we would like to point out that Theorem 1 can be applied to
multi-server optimal design problem for some special cases. For instance, set CI¼ 0
and Cw(n) be a piece-wise increasing linear function of n where the jump points are
optimal thresholds at which service rates increase, then the cost structure and object-
ive function are equivalent to those of the multi-server model with infinite capacity
in Jain (2005).

4. Optimal traffic intensities and switching times

Based on the structure of the optimal solution of the optimization problem (4), in this
section, we explore further properties related to the optimal policy and gain insight into
the balance between idle time and waiting time. For that purpose, we choose the linear
waiting cost function Cw(n)¼ nCw, which is a typical in the literature. Note that Cw is
the waiting cost per customer per unit time. We consider three cases: i) K¼ 1; ii) chang-
ing the traffic intensities while keeping switching time constant (Propositions 1, 2, and
3); and iii) changing the switching time while keeping the traffic intensities constant
(Propositions 4 and 5). For all cases, the policies under consideration have the same
structure as that of the optimal policy characterized in Theorem 1.

First, we consider the case with K¼ 1. For this case, the state-dependent M/M/1
queue is reduced to the classical M/M/1 queue (see Cohen (2012)), i.e., qn¼q, for
n¼ 1, 2, … . We assume cmin � q< 1. The long-run average cost is

TC qð Þ ¼ CI 1� qð Þ þ Cw
q

1� q
: (5)

It is easy to show that the function TC(q) is convex in q and the optimal solution
is given by

q�K¼1 ¼ max cmin, 1�
ffiffiffiffiffiffi
Cw

CI

r( )
:

TC�
K¼1 ¼ TC q�K¼1

� � ¼ CI 1� cminð Þ þ Cw
cmin

1� cmin
, if 1�

ffiffiffiffiffiffi
Cw

CI

r
< cmin;

2
ffiffiffiffiffiffiffiffiffiffiffi
CICw

p � Cw, if 1�
ffiffiffiffiffiffi
Cw

CI

r
� cmin:

8>>>><
>>>>:

(6)

Equation (6) implies that if CI(1–cmin)
2 � Cw, the traffic intensity should be as

small as possible (i.e., cmin), which can be achieved by reducing the arrival rate or
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increasing the service rate. This is intuitive since, under the condition, we would like
to keep the queue as small as possible. If CI(1–cmin)

2 > Cw, a proper traffic intensity
should be chosen by equation (6).

For the case with K¼ 2, we first keep the switching time q constant (i.e., q¼ q1).
Let TCq(c)¼TC(qn¼ c, for 1� n� q; qn¼ cmin, for n> q). By routine calculations,
TCq(c) can be written explicitly as

TCq cð Þ ¼
CI þ cþ 2c2 þ :::þ q� 1ð Þcq�1 þ qcq 1

1�cmin
þ cq cmin

1�cminð Þ2
� �

CW

1þ cþ c2 þ :::þ cq�1 þ cq 1
1�cmin

: (7)

It is easy to see that TCq(0)¼CI, TCq(1)¼ (q þ cmin/(1–cmin))Cw, and
TCq(cmin)¼ (1–cmin)CI þ cminCw/(1–cmin), for all q� 1. Further properties of TCq(c),
as a function of c and q, are collected in Propositions 1, 2, and 3.

Proposition 1. The function TCq(c) defined in equation (7), as a function of c, has the
following properties.

i. If CI � Cw, the function TCq(c) is increasing in c and, consequently, TCq(c) �
TCq(0)¼CI, for c� 0.

ii. Assume that CI > Cw and q¼ 1. We have TC1(c) � Cw. If Cw/(1–cmin) > CI,
TC1(c) is increasing in c; Otherwise, TC1(c) is non-increasing in c.

iii. Assume that CI > Cw and q> 1. The function –TCq(c) is unimodal in c.
w

Let c�1(q) be the optimal traffic intensity, i.e., TCq(c) is minimized at c�1(q), and
TC�K>1(q) the corresponding minimal cost. Since –TCq(c) is either monotone or uni-
modal in c, it is easy to find the optimal c�1(q). Based on Proposition 1, we charac-
terize the optimal solution fc�1(q), TC�K>1(q)g.
Proposition 2. For K¼ 2, it holds that

a. If CI � Cw, the optimal solution of (4) for given q is qn¼ cmin for n� 1,
and TC�K>1(q)¼TC�K¼1.

b. If Cw < CI < Cw/(1–cmin) and q¼ 1, then c�1(1)¼ cmin and TC�K>1(1)¼TC�K¼1.
c. If CI � Cw/(1–cmin) and q¼ 1, then c�1(1)¼1 and TC�K>1(1)¼Cw/(1–cmin).
d. If CI > Cw and q> 1, the optimal traffic intensity c�1(q) is the maximum of cmin

and the unique solution in (0, 1) satisfying

Xq
i¼0

ci þ cq
cmin

1� cminð Þ

 ! Xq
i¼1

i2ci�1 þ q2cq�1 cmin

1� cminð Þ þ qcq
cmin

1� cminð Þ2
 !

Cw

�
Xq
i¼1

ici�1 þ qcq�1 cmin

1� cminð Þ

 !
CI þ

Xq
i¼1

ici þ qcq
cmin

1� cminð Þ þ cq
cmin

1� cminð Þ2
 !

Cw

 !
¼ 0:

(8)
w
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Proposition 2 shows that, if CI � Cw/(1–cmin) and q¼ 1, the optimal solution of
equation (7) is q�1¼1, which implies that there is no service if the queue length
q(t)¼ 1. This optimal solution explains why in many real systems (e.g., restaurants),
service slows down when the queue is short. The reason is to keep the system loaded
in order to reduce system idle cost. The result implies that, while it is necessary to
stimulate herding effect, it is also important to make sure that a congestion is not
resulted from reduced efficiency.

The next result characterizes the relationship between the optimal solution fc�1(q),
TC�K>1(q)g of (7) and cost parameters fCI, Cwg.
Proposition 3. Consider the optimal policy fqn¼ c�1(q), for 1� n� q, and qn¼ cmin,
for n> qg. Then we have i) TC�K>1(q) is increasing in CI/Cw, and ii) c�1(q) is increas-
ing in CI/Cw. In addition, we have

lim
CI
Cw

!1
TC�

K>1 qð Þ ¼ qþ cmin

1� cmin

	 

Cw, and lim

CI
Cw

!1
c�1 qð Þ ¼ 1: (9)

w

Let cmin be a variable instead of a fixed system parameter. Then we find that the
queue with minimum cmin has the smallest minimum long-run average cost
TC�K>1(q). This is a natural extension of Theorem 1, as shown in Corollary 1. Note
that the linear increasing waiting cost in Corollary 1 can be relaxed to be
non-decreasing.

Corollary 1. TC�K>1(q) is an increasing function in cmin, for 0 � cmin < 1.

Proposition 3 implies that, if the system idle cost is higher, then the minimal long-
run average cost and the traffic intensity are higher. That implies that the system will
choose a slower service rate (when the queue length is small). So, herding appears if
the system is managed under the optimal policy, but the system efficiency is compro-
mised since the service rate may be deliberately set to be smaller. This observation
indicates that setting a higher idle cost to reduce system idleness also has negative
impact on system performance. We remark that the impact of the ratio CI/Cw on the
performance of the system was addressed in some other works (see the survey paper
by Cayirli and Veral (2003)) too.

Next, we keep the traffic intensities constant. For the K¼ 2 case, we have qn¼ c1,
for 1� n � q1, and qn¼ c2, for n > q1, where c2 can be chosen as cmin. As we
mention before, c2 may be regarded as different minimum traffic intensity cmin of dif-
ferent queueing systems with other things being equal. If c1 and c2 are fixed, the
long-run average cost is a function of q¼ q1 only. We assume c2 < 1 to ensure that
the queue is stable. By routine calculations, we obtain

p0 ¼ 1� cqþ1
1

1� c1
þ cq1c2

1
1� c2

 !�1

¼
1� c1ð Þ 1� c2ð Þ

1� c2 � cqþ1
1 þ c2c

q
1

, if c1 6¼ 1;

1� c2
c2 þ qþ 1ð Þ 1� c2ð Þ , if c1 ¼ 1;

8>>><
>>>:
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pn ¼
p0cn1 , if 1 � n � q;

p0c
q
1c

n�q
2 , if n > q;

(
(10)

The mean queue length, if it exists, can be obtained:

E q tð Þ� � ¼
p0 c1

1� cqþ1
1 � qþ 1ð Þ 1� c1ð Þcq1

1� c1ð Þ2 þ cq1c2
1þ q 1� c2ð Þ

1� c2ð Þ2
 !

, if c1 6¼ 1;

p0
q qþ 1ð Þ

2
þ c2

1þ q 1� c2ð Þ
1� c2ð Þ2

 !
, if c1 ¼ 1:

8>>>>><
>>>>>:

(11)

Let TCc1, c2 qð Þ¼TC(qn, n� 1). Now, we characterize the cost function TCc1, c2 qð Þ
and find the optimal q for the K¼ 2 case.

Proposition 4. Assume that c2 < 1. Then �TCc1, c2 qð Þ is unimodal in q. The optimal
q� that minimizes TCc1, c2 qð Þ is given by

q� ¼
min q � 1 :

qþ 1
1� c1

�
c1 � c2ð Þ 1� cqþ1

1

� �
1� c1ð Þ2 1� c2ð Þ � CI

CW

8<
:

9=
;, if c1 6¼ 1;

min q � 1 :
q qþ 1ð Þ

2
þ qþ 1
1� c2

� CI

CW

� �
, if c1 ¼ 1:

8>>>>><
>>>>>:

(12)

w

Based on Proposition 4, the optimal q can be found by enumerating TCc1, c2 qð Þ for
q¼ 0, 1, 2, … , until the first time that TCc1, c2 qð Þ increases.

In the next proposition, we explore the relationship between the optimal solution
fq�, TCc1, c2 q�ð Þg and system parameters c1 and c2.

Proposition 5. If c1 is fixed, q� is a decreasing function in c2, for 0 � c2 < 1, which is
piecewise constant. If c1 is fixed, TCc1, c2 q�ð Þ is an increasing function in c2, for 0 � c2
< 1. w

Proposition 5 implies that if the traffic intensity c2 is smaller (e.g., the service rate
is higher), then the switching time can be set at longer queue length. If c2 is increas-
ing, the queue length after switching is getting longer. Thus, it is better to switch at a
smaller queue length. When c1 is small, a large q� is chosen to keep the queue length
at the right level. Proposition 5 also implies that it is optimal to use the smallest traf-
fic intensity when a switching takes place if the queue length increases. In other
words, when the queue length increases and a switch of service rate is warranted, the
highest service rate (or the lowest arrival rate) should be selected (while the optimal
q� is kept). When c1 is large, it gives more flexibility to adjust the queue length (or
waiting time), since one can set the switching time earlier. Consequently, the long-
run average cost is reduced. Proposition 5 implies, again, that it is better-off for the
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system to slow down service when the system is less crowded, if the (only) trade-off
is between system idleness and customer waiting time. This is consistent with the
herding phenomenon in some service industry (e.g., restaurant).

Proposition 6. Assume that c2 < 1. Then we have i) q� is increasing in CI/Cw, and ii)
if Cw is fixed, TCc1, c2 q�ð Þ is increasing in CI/Cw.

Proposition 7. Assume that c2 < 1 and c2 is fixed. Then q� is non-increasing in c1, if
c2 � c1.

Both Propositions 6 and 7 are intuitive. Proposition 7 indicates that q� is
always bounded.

In addition to the discussions and observations following the propositions, further
insight and observations are provided in Section 5.

5. Numerical analysis

In this section, we present two sets of numerical examples to extend the insight we
have learned from Propositions 1 to 5. Examples 1 to 3 are about the impact of traffic
intensity c, which are related to Propositions 1 to 3. Examples 4 to 6 are about the
impact of rate switching state, which are related to Propositions 4 and 5.

Figure 1. The function TCq(c) for Cw ¼ 1 and cmin ¼ 0.7 for Example 1.
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From a decision-making point of view, especially in our study, it is sufficient to
come up with relative values for costs. It is the estimate of the ratio CI/CW that we
need, rather than the actual monetary values of CI and CW, even though they are
available via standard cost accounting (Fries and Marathe (1981)). The relative cost
ratio of CI/CW considered in the studies range from 1 to 100, as pointed out in
Cayirli and Veral (2003).

Example 1 (Propositions 1 and 2) Consider a model with Cw¼ 1 and cmin¼ 0.7. The
function TCq(c) for CI¼ 0.6, 2.5, 5, and 15, and q1¼ q¼ 1, 2, 4, 8, and 16, is plotted
in Figure 1. A few observations on TCq(c) can be obtained from Figure 1. By equa-
tion (7), TCq(cmin)¼ (1–cmin)CI þ cminCw/(1–cmin), for all q. Thus, every function
TCq(c) goes through the point (cmin, (1–cmin)CI þ cminCw/(1–cmin)). There are four
typical cases of TCq(c), as shown in Figure 1.

1. Figure 1(a) demonstrates that the function TCq(c) is increasing in c for all q� 1,
which is consistent with Proposition 1 under condition CI � Cw. The optimal c
for this case is the smallest possible traffic intensity (see Proposition 2).

2. Figure 1(b) demonstrates that the function TCq(c) is increasing for q¼ 1 and
–TCq(c) is unimodal in c for q> 1. Proposition 1 shows this property under con-
dition Cw < CI � Cw/(1–cmin).

3. Figure 1(c) and Figure 1(d) demonstrate that the function TCq(c) is decreasing in
c for q¼ 1 and –TCq(c) is unimodal in c for q> 1. Proposition 1 shows this
property under condition CI > Cw/(1–cmin). The optimal c is close to cmin if q is
sufficiently large.

Example 2. (Proposition 3) Consider the case with Cw¼ 1, q¼ 10, and cmin¼ 0.7.
The optimal c�1 as a function of CI/Cw is plotted in Figure 2.

It is intuitive (which is confirmed by Proposition 3) that both c�1 and TCq(c�1)
are increasing in CI/Cw. It is interesting to see that c�1 is constant for small CI/Cw,
which is also intuitive since a system with a nominal idleness cost would prefer the
server to work always at the high speed.

The relationship between c�1(q) and q is more complicated. Based on propositions in
Section 4 and the above numerical results, we have the following summary (Figure 3).

Figure 2. The optimal TC�K>1 and c�1 as a function of CI/Cw for Example 2.
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a. If CI � (1–cmin)Cw, c�1(q)¼ cmin and TC�K>1(q)¼TC�K¼1 is constant in q.
b. If CI > (1–cmin)Cw, c�1(q) is decreasing in q and converges to q�K¼1, and

TC�K>1(q) is increasing in q, and converges to TC�K¼1.

Example 3. Consider a model with CI¼ 50, Cw¼ 1, and cmin¼ 0.7. The functions
c�1(q) and TC�K>1(q) are plotted in Figure 3. The limit of c�1(q) is 0.8586 and the
limit of TC�K>1(q) is 13.1421, as q goes to infinity.

Intuitively, if q increases, the chance for a longer queue increases. Therefore, the
traffic intensity can be smaller (to minimize the long-run average cost). On the other
hand, the capability in manipulating the system idleness by adjusting c1 is reduced.
Thus, the minimal long-run average cost is increased.

Example 4 (Proposition 4) Consider a system with k¼ 1, l1¼ 1.1, l2¼ 3, CI¼ 20,
and CW¼ 1. Since the (negative) cost function is unimodal in q, it is easy to see that
the optimal switching point is q�¼ 5, as shown in Figure 4. That is: if the queue
length goes from 5 to 6, the service rate should be switched from l1 to l2.

Example 5 (Proposition 5) Consider a model with CI¼ 20 and Cw¼ 1. The optimal
q� is plotted as a function of c2, for c1¼ 0.7 and 2, in Figure 5. As c2 increases, the
optimal q� is getting smaller.

The optimal cost function TCc1, c2 q�ð Þ is plotted as a function of c2 in Figure 6, for
c1¼ 0.7 and 2, which is increasing in c2.

Example 6 (Proposition 5) Fix c2¼ 0.3 or 0.7, CI¼ 20, and Cw¼ 1, the relationship
between c1 and q� and TCc1, c2 q�ð Þ is exemplified in Figure 7.

As c1 increases, both q1� and TCc1, c2 q�ð Þ are decreasing. For smaller c2, both q1�
and TCc1, c2 q�ð Þ are larger. Thus, c1 increases, the system should switch to slower ser-
ver earlier.

It is clear that the numerical examples support the results obtained in Section 4. In
particular, we would like to point out that the propositions indicate that the ratio of

Figure 3. Functions TC�K>1(q) and c�1(q) for Example 3.
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Figure 4. The function TCc1, c2ðqÞ for Example 4.

Figure 5. The optimal q� as a function of c2 for Example 5.

Figure 6. The optimal cost function TCc1, c2ðq�Þ as a function of c2 for Example 5.
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CI and Cw, i.e., the trade-off between idle cost and waiting cost, has significant impact
on i) when the traffic intensity should be switched, and ii) the magnitude of the
change in traffic intensity. In general, if CI/Cw is high, switching may occur as late as
possible (i.e., at longer queue length), the traffic intensity should be smaller, and the
long-run average cost is larger. Thus, reducing idle cost is a more effective way to
reduce the total system cost than that of the waiting cost. Results also show that, in
order to reduce the long-run average cost, the service speed should be as slow as pos-
sible, if the queue length is below the rate switching point; and the service speed
should be as fast as possible, if the queue length is above the rate switching state. The
results and observations provide strong support for the “non-idleness” and “herding”
phenomena in service systems.

Example 7. Consider a model with Cw¼ 1, CI¼ 0.6, cmin¼ 0.7, and non-linear wait-
ing cost Cw(n)¼ n0.5Cw or Cw(n)¼ n2Cw. The long-run average cost TCq(c), as a
function of c, is plotted in Figure 8.

Together with Figure 1(a), where Cw(n)¼ nCw, Figure 8 demonstrates that the cost
function TCq(c) has similar properties for non-decreasing waiting cost functions.
Although Sections 4 and 5 of this paper focus on the linear waiting cost case, the
results can be obtained for the non-linear waiting cost case.

Figure 7. The optimal q� and TCc1, c2ðq�Þ as a function of c1 for Example 6.
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6. Conclusion

In this paper, we considered the trade-off between system idleness (herding) and cus-
tomer waiting (congestion), and gained insight into the issue through a number of
propositions and examples. We would like to point out that the insight gained in this
paper applies to systems with multiple production/service facilities, if the service cap-
acity in the M/M/1 queue can be considered as the aggregation of all service capaci-
ties in a stochastic system.

People observe idleness-aversion in service industries and try to explain this phe-
nomenon by introducing conundrums between different costs. Holding cost and
switching cost are definitely reasons why workers do not exert all their efforts all the
time. Our study pointed out that idleness cost induced by herding may be another
explanation for the slowdown and more importantly, for the intentional slowdown.
Empirical findings on worker’s productivity in service industries consistently indicate
the behavior of intentional slowdown when workload is small and our study is the
first to propose an explanation from a queueing perspective.

Although we start with waiting cost and idle cost in this paper, the solution
approach can be extended to include operating cost, which is incurred whenever a
server is working. If the server switches between different levels of traffic intensities
when queue length reaches certain thresholds, then in this case, the operating cost
can be added to the waiting cost, making it a piece-wise non-decreasing function of
queue length.

In the literature, many works have considered the trade-off between customer
waiting cost, system operating cost, and other types of costs. It is interesting to study
the balance between all of them, i.e., system idleness, system operation, and customer
waiting together. Mathematically, it is challenging to solve an optimization problem
like (3) with more complex cost structure. Qualitatively, it is harder to gain insight
into the problem of interest. Nevertheless, this is a good topic for future research.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Figure 8. TCqðcÞ as a function of c for Example 7.
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Appendix

Proof of Theorem 1. The result is obvious if K¼ 1 (Note that q1¼1 for this case). Suppose
that K> 1. Without loss of generality, the limiting probabilities can be expressed in terms of
c1 and fqn, n > q1g as follows:

p0 ¼
Xq1
i¼0

ci1 þ cq11
X1

n¼q1þ1

qq1þ1 � � � qn
 !�1

;

pn ¼ p0c
n
1 , for 1 � n � q1;

pn ¼ p0c
q1
1 qq1þ1qq1þ2 � � � qn, for n > q1:

(14)
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Then the cost function (3) can be written as

TC q1, q2, :::qn, :::ð Þ ¼
CI þ

Pq1
i¼0 Cw ið Þci1 þ cq11

P1
i¼q1þ1 Cw ið Þ Qi

j¼q1þ1 qj
� �� �� �

Pq1
i¼0 c

i
1 þ cq11

P1
i¼q1þ1

Qi
j¼q1þ1 qj

� �� � : (15)

Next, we show that a solution of the structure qn¼ g1, for 1� n � q1, and qn¼ cmin, for
n > q1, is better. It is easy to see that there exists g1 � c1 such that

Xq1
i¼0

gi1 þ gq11
X1

i¼q1þ1

ci�q1
min

 !
¼
Xq1
i¼0

ci1 þ cq11
X1

i¼q1þ1

Yi
j¼q1þ1

qj

0
@

1
A

0
@

1
A: (16)

Since Cw(n) is non-decreasing, Equation (16) leads to

Xq1
i¼0

Cw ið Þgi1 �
Xq1
i¼0

Cw ið Þci1 ¼
Xq1
i¼0

Cw ið Þ gi1 � ci1
� �

� Cw q1ð Þ
Xq1
i¼1

gi1 � ci1
� �

¼ Cw q1ð Þcq11
X1

i¼q1þ1

Yi
j¼q1þ1

qj

0
@

1
A

0
@

1
A� Cw q1ð Þgq11

X1
i¼q1þ1

ci�q1
min

 !

¼ cq11
X1

i¼q1þ1

Cw q1ð Þ
Yi

j¼q1þ1

qj

0
@

1
A� gq11

X1
i¼q1þ1

Cw q1ð Þci�q1
min

 !
(17)

¼ cq11
X1

i¼q1þ1

Cw ið Þ
Yi

j¼q1þ1

qj

0
@

1
A� gq11

X1
i¼q1þ1

Cw ið Þci�q1
min

0
@

1
A

� cq11
X1

i¼q1þ1

Cw ið Þ � Cw q1ð Þ
� � Yi

j¼q1þ1

qj

0
@

1
A� gq11

X1
i¼q1þ1

Cw ið Þ � Cw q1ð Þ
� �

ci�q1
min

0
@

1
A

¼ cq11
X1

i¼q1þ1

Cw ið Þ
Yi

j¼q1þ1

qj

0
@

1
A� gq11

X1
i¼q1þ1

Cw ið Þci�q1
min

0
@

1
A� cq11

X1
i¼1

g ið Þ
Yi
j¼1

qq1þj

0
@

1
A� gq11

X1
i¼1

g ið Þcimin

0
@

1
A,

where g(i)¼Cw(iþq1) – Cw(q1), which is also nonnegative and non-decreasing.
Let an ¼ cq11

Qn
j¼1 qq1þj and bn ¼ gq11 c

n
min, for n� 1. Since qn � cmin, for n � q1, it is easy

to see that a1/b1 � a2/b2 � … � an/bn � … . It is routine to show that

an
bn

�
PN

k¼nakPN
k¼nbk

� aN
bN

, and
an�1

bn�1
� an

bn
�
P1

k¼nakP1
k¼nbk

� lim
N!1

aN
bN

: (18)

Since an/bn � anþ1/bnþ1, we then obtain, from equation (18), that

P1
k¼1akP1
k¼1bk

� ::: �
P1

k¼nakP1
k¼nbk

�
P1

k¼nþ1akP1
k¼nþ1bk

, n � 1: (19)
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Define discrete random variables X1 (or X2) with probability distribution PfX1¼ ng¼ an/
(a1þa2þ… ) (or bn/(b1þb2þ… )), for n¼ 1, 2, … . Equation (19) implies that X1 is stochastically
larger than X2, which leads to E[Cw(X1)] � E[Cw(X2)] and E[g(X1)] � E[g(X2)]. Then we obtain

cq11
P1

i¼1

Qi
j¼1 qq1þj

� �
gq11
P1

i¼1 c
i
min

¼
P1

k¼1 akP1
k¼1 bk

�
cq11
P1

i¼1 g ið Þ Qi
j¼1 qq1þj

� �
gq11
P1

i¼1 g ið Þcimin

(20)

Since cq11
P1

i¼q1þ1

Qi
j¼q1þ1 qj

� �� �
� gq11

P1
i¼q1þ1 c

i�q1
min

� �
¼Pq1

i¼0 g
i
1 �

Pq1
i¼0 c

i
1 � 0, equation

(20) implies that cq11
P1

i¼1 g ið Þ Qi
j¼1 qq1þj

� �
� gq11

P1
i¼1 g ið Þcimin � 0: Then equation (17) implies

Xq1
i¼0

Cw ið Þgi1 þ gq11
X1

i¼q1þ1

Cw ið Þci�q1
min

 !
�
Xq1
i¼0

Cw ið Þci1 þ cq11
X1

i¼q1þ1

Cw ið Þ
Yi

j¼q1þ1

qj

0
@

1
A

0
@

1
A: (21)

Define a policy qn¼ g1, for 1� n � q1, and qn¼ cmin, for n > q1. Then the long-run aver-
age cost for this policy is given by

TC g1, g1, :::g1, cmin, cmin, :::ð Þ ¼
CI þ

Pq1
i¼0

Cw ið Þgi1 þ gq11
P1

i¼q1þ1Cw ið Þci�q1
min

� �
Pq1

i¼0
gi1 þ gq11

cmin
1�cminð Þ

: (22)

Equations (15) (16) (17) (21), and (22) lead to

TC g1, :::, g1, cmin, cmin, :::ð Þ � TC c1, :::, c1, qq1þ1, :::qn, :::ð Þ: (23)

Thus, for any policy fqn¼ c1, 1� n � q1, qn, n > q1g with qn � cmin for n� 1, there exists
a policy of the form fqn¼ g1, 1� n � q1, qn¼ cmin, n > q1g that has a smaller long-run aver-
age cost, which leads to the expected result.

Since K is finite and the above property holds for any set of fq1, … , qK–1, qK¼1g, the
optimal solution must have the desired structure. This completes the proof of Theorem 1. w

Note that, in the following proofs of propositions, the waiting cost function is given
as Cw(n)¼ nCw.

Proof of Proposition 1. Parts i) and ii) can be obtained easily. To prove iii), iv), and v), we find
the derivative of TCq(c) first. Denote the numerator and denominator in equation (7) as f(c) and
g(c), respectively. Taking derivatives of both sides of equation (7) with respect to c, we obtain

dTCq cð Þ
dc

¼ f 1ð Þ cð Þg cð Þ � f cð Þg 1ð Þ cð Þ
g cð Þð Þ2

¼

Pq
i¼0 c

i þ cq
cmin

1� cmin

	 
 Pq
i¼1 i

2ci�1 þ q2cq�1 cmin

1� cmin
þ qcq�1 cmin

1� cminð Þ2
	 


Cw

Pq
i¼0 c

i þ cq cmin
1�cmin

� �2

�

Pq
i¼1 ic

i�1 þ qcq�1 cmin

1� cmin

	 

CI þ

Pq
i¼1 ic

i þ qcq
cmin

1� cmin
þ cq

cmin

1� cminð Þ2
	 


Cw

	 

Pq

i¼0 c
i þ cq cmin

1�cmin

� �2
(24)
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By routine calculations, the numerator of the right hand side of equation (24), which is
f (1)(c)g(c) – f(c)g(1)(c), becomes

1
1� cmin

Cw
1

1� cmin
� CI

	 

, (25)

if q¼ 1; and

Cw � CI þ Cw

Xq�2

i¼1

iþ 2ð Þ iþ 3ð Þ
6

� CI

Cw

	 

iþ 1ð Þci

þ Cw
qþ 1ð Þ qþ 2ð Þ

6
� CI

Cw
þ cmin

1� cmin
qþ 1

1� cmin
� CI

Cw

	 
	 

qcq�1

þ Cw

X2q�1

i¼q

1
2

Xq
j¼i�qþ1

2j� i� 1ð Þ2 þ cmin

1� cmin
2q� 1� ið Þ 2q� 1� iþ 1

1� cmin

	 
0
@

1
Aci

�
X2q�2

i¼0

aic
i,

(26)

if q> 1. Note that a2q–1¼ 0.
If CI � Cw, by equations (25) and (26), the derivative of TCq(c) is nonnegative.

Consequently, TCq(c) is increasing in c, which proves ii).
If CI > Cw and q¼ 1, the expected results are obtained from equation (25).
If CI > Cw and q> 1, we have a0 < 0. It is easy to show that, if ai � 0, then (iþ 1)(iþ 2)/

6�CI/Cw and aiþ1 � 0, for i< q–2. Note that ai � 0, for i� q. Consequently, fa0, … , a2q–2g
may change sign at most once in fa0, … , aq–2g, faq–2, aq–1g, and faq–1, aqg. If

q qþ 1ð Þ
6

>
CI

Cw
and

qþ 1ð Þ qþ 2ð Þ
6

þ cmin

1� cmin
qþ 1

1� cmin

	 

<

CI

1� cminð ÞCw
, (27)

the sequence fa1, … , a2q–2g changes sign exactly three times; Otherwise, it changes sign
exactly once. Thus, by Descartes’ rule of signs, the polynomial in equation (26) has either one
positive root or three positive roots.

Next, we show that it is not possible to have three roots. If x is a root of the polynomial in

equation (26), then we must have f (1)(x)/g(1)(x) ¼ f(x)/g(x), where f (1)(x) and g(1)(x) are the

first derivative of f(x) and g(x). Suppose that there are three positive roots: x < y < z.

Equation (26) implies that the derivative of TCq(c) is negative at c ¼ 0. Then x and z are local

minimums and y is a local maximum. Note that it can be shown that x, y, and z are not sad-

dle points of TCq(c). We must have TCq(x) < TCq(y) and TCq(z) < TCq(y), which implies that

f (1)(x)/g(1)(x) < f (1)(y)/g(1)(y) and f (1)(z)/g(1)(z) < f (1)(y)/g(1)(y). Thus, the function f (1)(c)/g
(1)(c) is not monotone. On the other hand, the derivative of f (1)(c)/g(1)(c) can be obtained as

(f (2)(c)g(1)(c) – f (1)(c)g(2)(c))/(g(1,2), where f (2)(c) and g(2)(c) are the second derivatives of f(c)

and g(c), respectively. The numerator f (2)(c)g(1)(c) – f (1)(c)g(2)(c) can be obtained as, by rou-

tine and tedious calculation,
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f 2ð Þ cð Þg 1ð Þ cð Þ

¼
Xq�2

i¼0

iþ 2ð Þ2 iþ 1ð Þci þ q q� 1ð Þcmin

1� cmin
qþ 1

1� cmin

	 

cq�2

 ! Xq�1

i¼0

iþ 1ð Þci þ qcmin

1� cmin
cq�1

 !

¼
Xq�2

i¼0

Xiþ1

j¼1

j iþ 3� jð Þ2 iþ 2� jð Þ
0
@

1
Aci þ q q� 1ð Þcmin

1� cmin
qþ 1

1� cmin

	 

cq�2

þ
Xq�2

i¼1

Xq
j¼iþ1

j qþ iþ 1� jð Þ2 qþ i� jð Þ þ q q� 1ð Þcmin

1� cmin
qþ 1

1� cmin

	 

iþ 1ð Þþ iþ 1ð Þ2i qcmin

1� cmin

0
@

1
Acq�2þi

þ q q� 1ð Þ
1� cmin

qþ cmin

1� cmin

	 

q

1� cmin

 !
c2q�3,

(28)

f 1ð Þ cð Þg 2ð Þ cð Þ

¼
Xq�1

i¼0

iþ 1ð Þ2ci þ qcmin

1� cmin
qþ 1

1� cmin

	 

cq�1

 ! Xq�2

i¼0

iþ 2ð Þ iþ 1ð Þci þ q q� 1ð Þcmin

1� cmin
cq�2

 !

¼
Xq�2

i¼0

Xiþ1

j¼1

jþ 1ð Þj iþ 2� jð Þ2
0
@

1
Aci þ q q� 1ð Þcmin

1� cmin
cq�2

þ
Xq�2

i¼1

Xq
j¼iþ1

j j� 1ð Þ qþ iþ 1� jð Þ2 þ qcmin

1� cmin
qþ 1

1� cmin

	 

iþ 1ð Þiþ iþ 1ð Þ2 q q� 1ð Þcmin

1� cmin

0
@

1
Acq�2þi

þ q
1� cmin

qþ cmin

1� cmin

	 

q q� 1ð Þ
1� cmin

 !
c2q�3,

(29)

and

f 2ð Þ cð Þg 1ð Þ cð Þ � f 1ð Þ cð Þg 2ð Þ cð Þ

¼ Cw

Xq�2

i¼1

1
2

Xiþ1

j¼1

j iþ 2� jð Þ iþ 2� 2jð Þ2 þ 2 jþ 1ð Þ
� �0

@
1
Aci þ q q� 1ð Þcmin

1� cmin
qþ 1

1� cmin
� 1

	 

cq�2

þ Cw

Xq�2

i¼1

1
2

Xq
j¼iþ1

j qþ iþ 1� jð Þ qþ iþ 2� 2jð Þ2 þ j� 1
� �0

@
1
Acq�2þi

þ Cw

Xq�2

i¼1

cmin

1� cmin
iþ 1ð Þq q� 1� ið Þ qþ 1

1� cmin
� i� 1

	 
	 

cq�2þi > 0:

(30)

Thus, f (1)(c)/g(1)(c) is increasing in c, which leads to a contradiction.
Therefore, the polynomial in equation (26) cannot have three positive roots, but has exactly

one positive root. Then, if the polynomial in equation (26) is nonnegative at c, then it is non-
negative for any value greater than c. That implies that the function –TCq(c) is unimodal in c.
This completes the proof of Proposition 1. w
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Proof of Proposition 2. Part a), b), and c) can be obtained easily. Part d) can be obtained by
the unimodality of the cost function –TCq(c), which has been shown in Proposition 1. This
completes the proof of Proposition 2. w

In the proofs of Propositions 3 and 4, we need the following result on the limiting proba-
bilities fpn, n¼ 0, 1, 2, … g, which is well-known in the literature of stochastic comparison.

Lemma A.1 (Lindvall (2002)) Consider two state-dependent M/M/1 queues with parameters
fq1,n, n¼ 1, 2, … g and fq2,n, n¼ 1, 2, … g, respectively. Assume that q1,n � q2,n, for n¼ 1,
2, … , and the two queues are stable. Then the corresponding limiting probabilities fp1,n,
n¼ 0, 1, 2, … g and fp2,n, n¼ 0, 1, 2, … g satisfy p1,0 þ p1,1 þ … þ p1,n � p2,0 þ p2,1 þ
… þ p2,n, for n¼ 0, 1, 2, … . That is: the random variable having distribution fp1,n, n¼ 0, 1,
2, … g is stochastically larger than that having distribution fp2,n, n¼ 0, 1, 2, … g. w

Proof of Proposition 3. Part i) is obtained directly from equation (7). To prove part ii), we
write c�1(q) as c�1 for convenience. We rewrite (3) as TC(c)¼Cw(p0CI/Cw þ E[q(t)]) �
Cw(p0(c)cþE[q(c)]), where c¼CI/Cw. Then TC(c�1)¼Cw(p0(c�1)cþE[q(c�1)]). Due to the
optimality of c�1, we must have, for any 0 < c < c�1, Cw(p0(c)cþ E[q(c)]) >
Cw(p0(c�1)cþ E[q(c�1)]). Now, we consider ce > c and any 0 < c < c�1. By Lemma A.1, we
must have p0(c) > p0(c�1). Then

cep0 cð Þ þ E q cð Þ½ � ¼ ce � cð Þp0 cð Þ þ cp0 cð Þ þ E q cð Þ½ �
� ce � cð Þp0 cð Þ þ cp0 c�1ð Þ þ E q c�1ð Þ� �
� ce � cð Þp0 cð Þ þ c� ceð Þp0 c�1ð Þ þ cep0 c�1ð Þ þ E q c�1ð Þ� �
� ce � cð Þ p0 cð Þ � p0 c�1ð Þ� �þ cep0 c�1ð Þ þ E q c�1ð Þ� �
� cep0 c�1ð Þ þ E q c�1ð Þ� �

:

(31)

Thus, any c satisfying 0 < c < c�1 cannot be the optimal solution for the case with ce > c.
Consequently, we must have c�1,e � c�1. This proves ii). This completes the proof of
Proposition 3. w

In order to prove Proposition 4, we first show two properties on p0 and E[q(t)] as a func-
tion of q.

Lemma A.2 Assume that c2 < 1. i) The probability p0 is decreasing in q. ii) The mean queue
length E[q(t)] is increasing in q.

Proof. Part i) is obtained by using the explicit expression of p0 given in equation (10). If
c1¼ 1, the result is obvious. If c1 6¼ 1, we rewrite the expression of p0 as

p0 ¼ 1� c1ð Þ 1� c2ð Þ
1� c2 � cq1 c1 � c2ð Þ

¼ c1 � 1ð Þ 1� c2ð Þ
cq1 c1 � c2ð Þ � 1� c2ð Þ : (32)

Part i) is proved for c1 < 1 and c1 > 1.
If q increases, by Lemma A.1, the corresponding limit distribution of the queue length

becomes stochastically larger. Thus, the mean queue length becomes larger (Marshall et al.
(2011)). This proves part ii). This completes the proof of Lemma A.2. w

Proof of Proposition 4. We write E[q(t)] as Eq[q(t)] to emphasize E[q(t)] as a function of q.
We rewrite Eq[q(t)] as Eq[q(t)]¼ p0(q)fE(q). Then we have
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Dp0 ¼ p0 qþ 1ð Þ � p0 qð Þ ¼ � 1� c1ð Þ2 1� c2ð Þ c1 � c2ð Þcq1
1� c2 � cqþ1

1 þ c2c
q
1

� �
1� c2 � cqþ2

1 þ c2c
qþ1
1

� � , (33)

and

DfE ¼ fE qþ 1ð Þ � fE qð Þ

¼ c1
cqþ1
1 1� c1ð Þ þ qþ 1ð Þ 1� c1ð Þcq1 1� c1ð Þ � 1� c1ð Þcqþ1

1

1� c1ð Þ2

þ cq1c2
c1ð1þ qþ 1ð Þ 1� c2ð Þ � 1þ q 1� c2ð Þð Þ

1� c2ð Þ2

¼ qþ 1ð Þcqþ1
1 þ cq1c2

c1 � 1þ q c1 � 1ð Þ þ c1ð Þ 1� c2ð Þ
1� c2ð Þ2

¼ c1 � c2ð Þcq1
1þ q 1� c2ð Þ

1� c2ð Þ2 :

(34)

Using equations (33) and (34), we can obtain

DE q tð Þ� � ¼ Eqþ1 q tð Þ� �� Eq q tð Þ� �
¼ p0 qþ 1ð ÞDfE þ Dp0fE qð Þ
¼ 1� c1ð Þ 1� c2ð Þ

1� c2 � cqþ2
1 þ c2c

qþ1
1

� � cq1 c1 � c2ð Þ 1þ q 1� c2ð Þ
1� c2ð Þ2

� 1� c1ð Þ2 1� c2ð Þ c1 � c2ð Þcq1
1� c2 � cqþ1

1 þ c2c
q
1

� �
1� c2 � cqþ2

1 þ c2c
qþ1
1

� � fE qð Þ

¼ 1� c1ð Þ 1� c2ð Þ c1 � c2ð Þcq1
1� c2 � cqþ2

1 þ c2c
qþ1
1

� � 1þ q 1� c2ð Þ
1� c2ð Þ2 � 1� c1ð ÞfE qð Þ

1� c2 � cqþ1
1 þ c2c

q
1

 !
:

(35)

For the long-run average cost function, we obtain

DTC ¼ TC qþ 1ð Þ � TC qð Þ ¼ Dp0CI þ DE q tð Þ� �
CW

¼ � 1� c1ð Þ2 1� c2ð Þ c1 � c2ð Þcq1
1� c2 � cqþ1

1 þ c2c
q
1

� �
1� c2 � cqþ2

1 þ c2c
qþ1
1

� �CI

þ 1� c1ð Þ 1� c2ð Þcq1 c1 � c2ð Þ
1� c2 � cqþ2

1 þ c2c
qþ1
1

� � 1þ q 1� c2ð Þ
1� c2ð Þ2 � 1� c1ð ÞfE qð Þ

1� c2 � cqþ1
1 þ c2c

q
1

 !
CW

¼ 1� c1ð Þ 1� c2ð Þ c1 � c2ð Þcq1
1� c2 � cqþ2

1 þ c2c
qþ1
1

1þ q 1� c2ð Þ
1� c2ð Þ2 CW � 1� c1ð Þ fE qð ÞCW þ CI

� �
1� c2 � cq1 c1 � c2ð Þ

 !
:

(36)

Now, we focus on the following function

Dh qð Þ ¼ 1þ q 1� c2ð Þ
1� c2ð Þ2 � 1� c1ð Þ fE qð Þ þ CI=CW

� �
1� c2 � cq1 c1 � c2ð Þ : (37)
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If c1 > 1, it is easy to show that 1� c2 � cq1 c1 � c2ð Þ < 0: Then we always have
1� c1ð Þ 1� c2 � cq1 c1 � c2ð Þ

� ��1 � 0: Then Dh(q) � 0 if and only if

1þ q 1� c2ð Þ
1� c1ð Þ 1� c2ð Þ2 1� c2 � cq1 c1 � c2ð Þ

� �
� fE qð Þ � CI

CW
, (38)

By routine calculation, it can be shown that Dh(q) � 0 if and only if

qþ 1
1� c1

�
c1 � c2ð Þ 1� cqþ1

1

� �
1� c1ð Þ2 1� c2ð Þ � CI

CW
, if c1 6¼ 1;

q qþ 1ð Þ
2

þ qþ 1
1� c2

� CI

CW
, if c1 ¼ 1;

8>>>>><
>>>>>:

(39)

The left hand side of equation (39) is increasing in q. Therefore, by equation (37), Dh(q) is
increasing in q. Thus, DTCc1, c2 qð Þ changes it sign at most once. Consequently, �TCc1, c2 qð Þ is
unimodal in q. This completes the proof of Proposition 4. w

Proof of Proposition 5. For the first part of Proposition 5, we consider three cases: c1 < 1,
c1¼ 1, and c1 > 1. Suppose that c1 < 1. Suppose that c2 increases by d (>0) and c2 þ d< 1.
Then for any q � q1�(c2), we have

qþ 1
1� c1

�
c1 � c2ð Þ 1� cqþ1

1

� �
1� c2ð Þ 1� c1ð Þ2 þ CI

CW

) qþ 1
1� c1

�
c1 � c2ð Þ 1� cqþ1

1

� �
1� c2ð Þ 1� c1ð Þ2 þ CI

CW
�

c1 � c2 � dð Þ 1� cqþ1
1

� �
1� c2 � dð Þ 1� c1ð Þ2 þ CI

CW
,

(40)

since (c1–c2)/(1–c2) > (c1–c2–d)/(1–c2–d). Therefore, by equation (12), we must have
q1�(c2þd) � q1�(c2). If c1¼ 1, the result is obtained directly from equation (12). Finally, sup-
pose that c1 > 1. For any q � q1�(c2), we have

c1 � c2ð Þ cqþ1
1 � 1

� �
1� c2ð Þ 1� c1ð Þ2 � qþ 1

c1 � 1
þ CI

CW

)
c1 � c2 � dð Þ cqþ1

1 � 1
� �

1� c2 � dð Þ 1� c1ð Þ2 �
c1 � c2ð Þ cqþ1

1 � 1
� �

1� c2ð Þ 1� c1ð Þ2 � qþ 1
1� c1

þ CI

CW
,

(41)

since (c1–c2–d)/(1–c2–d) > (c1–c2)/(1–c2). Therefore, by equation (12), we must have
q1�(c2þd) � q1�(c2).

Next, we show the second part of Proposition 5. The first part of Proposition 5 implies that
for given c2, q1� remains the same in an interval covering c2. Suppose that q1� remains the
same in [c2, c2þd) for d> 0. By routine calculations, the (right) derivative of TCc1, c2 q�ð Þ with
respect to c2 can be obtained as follows:

dTCc1, c2 q�1ð Þ
dc2

¼ Cw

1� c1ð Þ2 � q�1 c1 � 1ð Þ 1� c2ð Þ2 þ c
q�1
1 � 1

� �
c1 � c2ð Þ2

� �
1� c2ð Þ2 1� c2 � c1

q�1þ1 þ c1
q�1c2

� �2 c1
q�1

� CI
1� c1ð Þ2

1� c2 � c1
q�1þ1 þ c1

q�1c2
� �2 c1q�1 :

(42)
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By Proposition 5, if c1 6¼ 1, q1� satisfies q�1þ1
1�c1

� c1�c2ð Þ 1�c
q�
1
þ1

1

� �
1�c1ð Þ2 1�c2ð Þ > CI

CW
,

dTCc1, c2 q�1ð Þ
dc2

� Cw

1� c1ð Þ2 � q�1 c1 � 1ð Þ 1� c2ð Þ2 þ c
q�1
1 � 1

� �
c1 � c2ð Þ2

� �
1� c2ð Þ2 1� c2 � c1

q�1þ1 þ c1
q�1c2

� �2 c1
q�1

� Cw
q1 þ 1
1� c1

�
c1 � c2ð Þ 1� cq1þ1

1

� �
1� c1ð Þ2 1� c2ð Þ

0
@

1
A 1� c1ð Þ2c1q�1

1� c2 � c1
q�1þ1 þ c1

q�1c2
� �2

¼ Cw

c1 � 1ð Þc2 c
q�1þ1
1 þ c2 � c

q�1
1 c2 � 1

� �
1� c2ð Þ2 1� c2 � c1

q�1þ1 þ c1
q�1c2

� �2 c1q�1 :

(43)

If c1 > 1, we have c1
1þq1� þ c2 � c1

q1�c2 � 1 > 0, and if c1 < 1, we have c1
1þq1� þ c2 �

c1
q1�c2 � 1 < 0: For both cases, we have shown that dTCc1, c2 q�1ð Þ=dc2 > 0:
If c1¼ 1, equation (42) becomes

dTCc1, c2 q�1ð Þ
dc2

¼ Cw
1þ 2q�1 1� c2ð Þ þ q�1 � 1ð Þq�1 1� c2ð Þ2=2
� �

1� c2ð Þ2 q�1 þ 1� q�1c2ð Þ2 � CI
1

q�1 þ 1� q�1c2ð Þ2 : (44)

By Proposition 4, we obtain

dTCc1, c2 q�1ð Þ
dc2

� Cw
1þ 2q�1 1� c2ð Þ þ q�1 � 1ð Þq�1 1� c2ð Þ2=2
� �

1� c2ð Þ2 q�1 þ 1� q�1c2ð Þ2

� Cw
q�1 q�1 þ 1ð Þ

2
þ q�1 þ 1

1� c2

	 

1� c2ð Þ2

1� c2ð Þ2 q�1 þ 1� q�1c2ð Þ2

¼ Cw
c2

1� c2ð Þ2 q�1 þ 1� q�1c2ð Þ2 > 0

(45)

Next, we consider the situation if q�1þ1
1�c1

� c1�c2ð Þ 1�c
q�
1
þ1

1

� �
1�c1ð Þ2 1�c2ð Þ ¼ CI

CW
: For this case, q1� is optimal

in (c2–d, c2] and q1��1 is optimal in (c2, c2þd) for (sufficiently) small d> 0. That indicates
that q1��1 is not optimal at c2. Therefore, we must have limd!0þ TCc1, c2 q�1 � 1ð Þ �
limd!0� TCc1, c2 q�1ð Þ � 0: In fact, under the condition, we have limd!0þ TCc1, c2 q�1 � 1ð Þ ¼
limd!0� TCc1, c2 q�1ð Þ: Therefore, TCc1, c2 q�ð Þ is increasing in c2 for this case.

Summarizing all the cases, function TCc1, c2 q�ð Þ is continuous and piecewise increasing in
c2. Consequently, TCc1, c2 q�ð Þ is increasing in c2. This completes the proof of Proposition 5. w

Proof of Proposition 6. For part i), we first rewrite the inequality in equation (12) as follow:

qþ 1
1� c1

þ
c2 � c1ð Þ cq1 þ cq�1

1 þ :::þ cþ 1
� �
1� c1ð Þ 1� c2ð Þ � CI

CW
(46)

The result is obtained if c1 � c2 (< 1). If c2 < c1, we further rewrite equation (46) as

qþ 1
1� c2

þ
c1 � c2ð Þ cq�1

1 þ 2cq�2
1 þ :::þ q� 1ð Þc1 þ q

� �
1� c2ð Þ � CI

CW
(47)

which leads to the desired result. Part ii) is obvious from equation (7). This completes the
proof of Proposition 6. w

Proof of Proposition 7. The result is obvious from equation (47). This completes the proof of
Proposition 7. w

536 H. ZHANG ET AL.


	Abstract
	Introduction
	Literature review
	Problem formulation and a main result
	Optimal traffic intensities and switching times
	Numerical analysis
	Conclusion
	Disclosure statement
	References
	mkchapTINF_s0008_sec



