
Received: 1 August 2018 Revised: 27 January 2020 Accepted: 31 May 2020 Published on: 20 July 2020

DOI: 10.1002/nav.21931

R E S E A R C H A R T I C L E

Optimal policies for stochastic clearing systems with
time-dependent delay penalties

Qi-Ming He James H. Bookbinder Qishu Cai

Department of Management Sciences, University

of Waterloo, Waterloo, Ontario, Canada

Correspondence
Qi-Ming He, Department of Management

Sciences, University of Waterloo, Waterloo, ON

N2L 3G1, Canada.

Email: q7he@uwaterloo.ca

Funding information
Natural Sciences and Engineering Research

Council of Canada.

Abstract
We study stochastic clearing systems with a discrete-time Markovian input process,

and an output mechanism that intermittently and instantaneously clears the system

partially or completely. The decision to clear the system depends on both quanti-

ties and delays of outstanding inputs. Clearing the system incurs a fixed cost, and

outstanding inputs are charged a delay penalty, which is a general increasing func-

tion of the quantities and delays of individual inputs. By recording the quantities

and delays of outstanding inputs in a sequence, we model the clearing system as a

tree-structured Markov decision process over both a finite and infinite horizon. We

show that the optimal clearing policies, under realistic conditions, are of the on-off

type or the threshold type. Based on the characterization of the optimal policies,

we develop efficient algorithms to compute parameters of the optimal policies for

such complex clearing systems for the first time. We conduct a numerical analysis

on the impact of the nonlinear delay penalty cost function, the comparison of the

optimal policy and the classical hybrid policy (ie, quantity and age thresholds), and

the impact of the state of the input process. Our experiments demonstrate that (a)

the classical linear approximation of the cost function can lead to significant perfor-

mance differences; (b) the classical hybrid policy may perform poorly (as compared

to the optimal policies); and (c) the consideration of the state of the input process

makes significant improvement in system performance.

KEYWORDS

delay penalties, Markovian arrival process, shipment consolidation, stochastic clear-

ing system

1 INTRODUCTION

A stochastic clearing system receives and accumulates inputs

of random quantities over random time intervals until cer-

tain predetermined criteria are met; then, there is a clearing
of some or all of those inputs instantaneously. There are

many practical applications of this type of systems in manu-

facturing, transportation, tourism, and healthcare industries,

for example, (a) shuttle bus service at airports or train sta-

tions; (b) food delivery service for restaurants; and (c) goods

shipments in transportation (this is the well-known shipment
consolidation problem).

For the management of stochastic clearing systems, a key

issue is to decide when and how much to clear (ie, to depart,

deliver, or dispatch) in order to gain economies of scale. In

the existing models of stochastic clearing systems, the aggre-

gate total quantity is usually the only variable used to keep

track of the system state and for decision making. Thus,

a recently acquired input is perceived as equally urgent as

another input that was received a long time ago. It is easy

to see the limitation of this assumption since the time spent

in a system is an important factor in deciding when a given

input must be cleared. In this paper, we introduce a new

formalism to model stochastic clearing systems and a novel

approach to analyze and optimize them. More specifically, we

introduce a sequence of numbers to record the accumulated

input delays (i.e., elapsed times) and quantities that are nec-

essary for system control. This set of information can enable

Naval Res Logistics 2020;67:487–502 wileyonlinelibrary.com/journal/nav © 2020 Wiley Periodicals LLC 487

https://orcid.org/0000-0003-2381-3242

488 HE ET AL.

better clearing decisions with respect to the varying levels of

urgency among inputs. The system state space, based on the

input sequence, possesses a tree structure that is utilized by

our algorithms for computing the optimal clearing policies.

In this paper, we conduct our analysis on a quite general and

complicated model. First, we use a batch Markovian arrival

process (BMAP) to model both the quantities and interarrival

times of inputs. Such an input process generalizes the discrete

analog of the compound Poisson process, and is particularly

potent at capturing the correlations between different inputs,

as well as the variation of input rate over time. Second, we

use more general functions for the fixed clearing costs and the

variable delay penalty costs. Those functions are assumed to

be increasing in both the quantities and delay times of inputs.

The variable delay penalty cost (e.g., inventory carrying cost)

portion of the total cost function has a different interpretation

in shipment consolidation (SCL) than it does in the deter-

mination of optimal quantities in production or stock-control

applications. In the latter two cases, the decision-making firm

owns the goods in question. In the SCL case, the firm decid-

ing when to dispatch is often a trucking company that does not

own the goods. In the SCL context, although we may call it

inventory carrying cost, that cost term represents the disutility

of a customer whose order has not yet been shipped. It is well

known that this disutility is an increasing function of the cus-

tomer waiting time. To the best of our knowledge, this is the

first time in the literature that both the delays and the quanti-

ties of individual inputs are modeled in nonlinear fashion for

the analysis and optimization of stochastic clearing systems.

Both the input process and the cost structure of the clearing

system investigated in this paper are far more complicated and

realistic than those in the existing literature. The use of the

sequence of delays and quantities, the general input process,

and the general cost functions constitute the main modeling

contribution of this paper.

While the preceding assumptions render the clearing

systems more complex but more realistic, their analysis

and optimization become challenging. For example, the

tree-structured state space is complicated for analysis and

can be large in size for computation. To attack the space

complexity and space dimensionality issues, we

• utilize the Markov decision process (MDP) and matrix-

analytic methods, which make the clearing systems analyt-

ically and numerically tractable;

• bring in the partial order of vector dominance to compare

system states, and show that, under realistic conditions,

the optimal clearing policy is of the on-off type or of the

threshold type, which constitutes the main methodological

contribution of the paper; and

• based on the characterization of the optimal policies, com-

bine the value-iteration method for MDP, matrix-analytic

methods, and the branch-and-bound method to develop

efficient algorithms for finding the optimal clearing poli-

cies, which constitutes the main algorithmic contribution

of the paper and is the first in the study of complex clearing

systems.

Using the computational methods, in Section 6, we conduct

an in-depth numerical analysis on issues such as: (a) the bene-

fit of employing nonlinear delay penalty cost functions of both

the delays and quantities of individual inputs; (b) the neces-

sity to use optimal policies based on delays and quantities of

individual inputs (vs the classical hybrid policy); and (c) the

benefit in utilizing Markov modulated processes to model the

inputs. Numerical examples demonstrate a significant gain in

system performance of the proposed models, which justifies

the added complexity in system modeling and optimization.

The remainder of this paper is organized as follows. In

Section 2, a comprehensive literature review is presented.

The stochastic model of interest is introduced in Section 3.

In Section 4, for the finite time horizon case, the optimal

policies are characterized and a computational method is

developed. Section 5 deals with the infinite horizon case with

discounted total cost. Three examples are examined numeri-

cally in Section 6. Section 7 concludes the paper. Proofs of all

theorems are provided in the Appendix.

2 LITERATURE REVIEW

Stochastic clearing systems were first carefully modeled and

studied by Stidham (1974). In that paper, the process was

considered as regenerative, and an explicit expression for

the stationary distribution of the quantity in the system was

derived. Subsequently, Stidham (1977) generalized the clear-

ing operations so that not everything must be cleared at once.

While the development of stochastic clearing systems has

been ongoing for decades, more research has recently been

done on its sub- or related areas: inventory control, ship-

ment consolidation, and queueing control. Thus, our literature

review will focus on those three types of stochastic models.

Inventory control was touted as one of the main appli-

cations of stochastic clearing systems. Inventory problems

belong to the broader definition of stochastic clearing sys-

tems in two ways. First, if the system keeps no stock on hand,

but instead backlogs all demands and satisfies them later,

those backlogged demands are the inputs to the stochastic

clearing system, and instantaneous inventory replenishment

is equivalent to the clearing event. Second, more generally,

we can treat any stock replenishment as a clearing, after

which the inventory is reset to a desirable level. Then, any

demand received after replenishment can be considered an

input to the system; the total amount sold is the accumu-

lated input quantity. Some inventory models, such as systems

with perishable products, have both inventory and clearance

features (Li & Yu, 2013; Li, Yu, & Wu, 2016). One of the

well-known inventory results is the optimality of the (s, S)

policy, which was first shown by Scarf (1960) using the

concept of K-convexity (also see Iglehart, 1963; Veinott &

HE ET AL. 489

Wagner, 1965; Zheng, 1991). Stidham (1986) and Kim and

Seila (1993) studied inventory models with an (s, S) policy

from stochastic clearing system’s point of view, and identi-

fied necessary and sufficient conditions on the cost function

and input process for optimality of the clearing parameters.

Recent inventory literature studied systems with Markovian

demand processes. Song and Zipkin (1993) introduced a

model where the demand rate varies with an underlying

state-of-the-world variable (see also Beyer, Cheng, Sethi, &

Taksar, 2010; Chen & Song, 2001). In those works, the opti-

mal policies were proved to be state-dependent (s, S) policies,

which is significant due to the simplicity of the optimal con-

trol policy. The importance of such studies is further increased

by the fact that the Markovian arrival process can approxi-

mate any stochastic input/demand processes. In this paper, the

input process of our stochastic clearing system is assumed to

be a Markovian input process (see Asmussen & Koole, 1993).

We find the state-dependent and on-off/threshold type opti-

mal clearing policies for our systems. Although information

on the state of the input process is usually not available in

applications, the optimal policies can lead to good heuristic

clearing policies that do not depend on the state to improve

system performance. We refer to Xia, He, and Alfa (2017) for

a detailed discussion with numerical examples on this issue

for some queueing control problems.

Shipment consolidation is a logistics strategy whereby

many small shipments are combined into a few larger loads

to achieve economies of scale. Such systems are among

the most natural examples of stochastic clearing systems.

Although the main purpose of shipment consolidation is to

minimize overall costs, that should not be at the expense

of unsatisfactory customer service. By associating appro-

priate monetary values to the delays of orders, achieving

an optimal balance between cost reductions and maintain-

ing good service becomes the ultimate goal of that strat-

egy. Shipment consolidation models have been investigated

extensively (see Bookbinder & Higginson, 2002; Çetinkaya,

Tekin, & Lee, 2008; Higginson & Bookbinder, 1994, 1995;

Mutlu, Çetinkaya, & Bookbinder, 2010). Bookbinder, Cai,

and He (2011) modeled the order arrival process by a dis-

crete time BMAP. An efficient computational procedure

was developed for evaluating classical dispatch policies (ie,

[total] quantity-threshold policy, age-threshold policy, and the

hybrid policy) against a set of performance measures. More

recently, Cai, He, and Bookbinder (2014) proposed to use a

tree structured Markov chain to record information about the

consolidation process, specifically the quantities and waiting

times of individual orders. A heuristic algorithm was devel-

oped to determine the parameter of a special set of dispatch

policies, and the algorithm was proved to yield the overall

optimal policy under certain conditions. The clearing model

introduced in this paper is more general than most of the

models considered in the literature. The closest are the tran-

shipment models considered Bookbinder et al. (2011) and Cai

et al. (2014), in which the focus is on steady-state analysis,

not the optimal policy. In Table 1, we compare our clearing

model assumptions to those in the literature.

The present paper generalizes the cost structure to include

nonlinear functions for both the delay costs and the clear-

ing costs. More importantly, this paper focuses on finding

the optimal clearing policy, and the computational methods

developed in this paper can be used for evaluating any given

clearing policy as well.

The concepts of stochastic clearing systems have also been

applied to queueing systems. For example, Boxma, Perry, and

Stadje (2001) studied the clearing models for M/G/1 queues,

in which events called “disasters” occur at certain random

times, causing an instantaneous removal of the entire resid-

ual workload from the system. In a similar line of research,

Dudin and Karolik (2001) and Inoue and Takine (2014) con-

sidered queueing systems with a Markovian arrival process

and potential exposure to disasters. Those authors calculated

quantities related to the embedded and arbitrary time queue

length distributions, waiting time distributions, as well as the

average output rate and loss probability.

Our literature review shows that the early publications on

stochastic clearing systems involved a general problem frame-

work. Since then, research has focused on particular applica-

tion areas, mainly inventory control, shipment consolidation

problems, and queueing system management. However, all

these models have assumed that the cost to hold the accumu-

lated inputs is charged at a constant rate, proportional to the

total quantity on hand at any time. That assumption is suffi-

cient in some areas, but not for others, especially those such

as shipment consolidation and shuttle bus dispatch, where

the longer an input stays in the system, the more expensive

the cost rate is perceived to be. From the modeling perspec-

tive, the present literature on stochastic clearing systems is

ill-equipped to reflect some delicate real situations, in which

the input process is correlated and costs depend on the status

TABLE 1 Model assumption comparison

This paper
Bookbinder et al.
(Bookbinder et al., 2011) Cai et al. (Cai et al., 2014) Literature

Input DBMAP DBMAP DBMAP Geometric

Cost General delay cost;

general clearing cost

General delay cost; constant

clearing cost

General delay cost;

general clearing cost

Linear delay cost;

convex clearing cost

System state Individual orders (tree

structure)

Aggregate quantities (eg,

quantity, age)

Individual orders (tree

structure)

Aggregate quantities

490 HE ET AL.

of individual inputs. In this paper, we try to fill the gap by

eliminating the deficiency of the input process and cost struc-

ture in the current literature, which is the main contribution

of the present research.

3 THE MODEL OF INTEREST

We define a typical stochastic clearing system in which inputs

of random quantities are received, accumulated, and cleared.

We assume that the planning horizon is discrete and divided

into N periods or N decision epochs, where N can be finite or

infinite. At the beginning of each period, a clearing decision

is made according to a clearing policy, and that decision is

executed immediately. Within each period, inputs of a random

quantity arrive and become part of the total quantity outstand-

ing. In the rest of this section, we define four components of

the clearing system explicitly: (i) the input process; (ii) sys-

tem state space; (iii) decision rules and clearing policies; and

(iv) cost structure.

3.1 The input process

Inputs arrive according to a discrete time batch Markovian
arrival process (DBMAP) (see Neuts, 1979). Let {it, t = 0,1,2,

… } be a discrete time homogeneous Markov chain with states

{1, 2, … , M} and transition matrix D. In the system, the prob-

ability that an input of quantity qt arrives in period t depends

on the state of the Markov chain. Specifically, we assume that

{(qt, it), t = 1, 2, … } is a Markovian arrival process with

matrices {D0, D1, … , DQ} such that, in state i, (Dq)i, j, for

q = 0, 1, … , Q, is the probability that qt = q units of input

arrive while the underlying process it changes from state i at

the beginning of the current period t to state j at the beginning

of the next period. Here Q is the maximum possible quantity

of an input. It is easy to see that D = D0 +D1 + · · · +DQ. The

following are two special cases of DBMAP.

Example 3.1.1 The well-known compound
renewal process is a DBMAP with M = 1.

Example 3.1.2 Markov modulated arrival
process is a DBMAP with Dq = diag(f 1(q),

… , f M(q))D, where f i(q)= Pr{qt = q|it = i}, for

i = 1, 2, … , M, and “diag” means a diagonal

matrix.

The state of underlying process of the input process pro-

vides information on the residual arrival time and the amount

of the next input. In general, optimal clearing policies depend

on the state, and yet information on the state is not available

in practice. For applications, heuristic policies based on the

optimal clearing policies can be introduced, which can per-

form significantly better than classical clearing policies (eg,

the quantity, age, or hybrid policy). Again, we refer to Xia

et al. (2017) for a numerical discussion on the issue.

3.2 System state space and vector dominance

For stochastic clearing systems, a system state variable is usu-

ally introduced to track the total quantity of all outstanding

inputs. Our model extends the existing ones by simultane-

ously recording the delays of individual inputs, that is, the

time elapsed since each input was received, and the quantities

of individual inputs. To do so, we use a sequence (ie, string)

of nonnegative integers.

Suppose that the current period is t. Let x[j] be the (remain-

ing) quantity of the input that arrived in period t− j, where j
is the delay time of the input, and j = 1, 2, … , t. We call x[j]
the remaining quantity, since part of the input that arrived in

period t− j may have been cleared before period t. We define

xt = [x[l], x[l− 1], … , x[1]], where l is the age of the oldest input

that is still not completely cleared, {x[l], x[l− 1], … , x[1]} are

quantities of inputs still in the system at the beginning of

period t: x[l] is the quantity of the oldest input (that has not

been cleared completely), x[l− 1] the second oldest, … , and

x[1] the youngest that just arrived in period t− 1. Then xt cap-

tures the state of the system before the clearing decision is

made in period t. We shall refer to xt as the pre-clearing sys-
tem content in period t. For example, if x8 = [4,2,3], there are

three inputs in the system at the beginning of period eight; the

oldest input that arrived in period five has quantity 4; the sec-

ond oldest input that arrived in period six has quantity 2; and

the youngest input that arrived in period seven has quantity 3.

Analogous to xt, we define the post-clearing system con-
tent as yt, which records outstanding inputs remaining in the

system immediately after the clearing decision is carried out

and before any new input arrives in period t. The differ-

ences between xt and yt are the outstanding quantities that are

cleared in period t, which we shall denote as wt. For the above

example, in period eight, suppose that we decide to clear

the input that arrived in period five and 2 units of the input

that arrived in period seven; then we have w8 = [4,0,2] and

y8 = [0,2,1]. Apparently, we must have x8 = w8 + y8, or more

generally xt =wt + yt. Suppose further that an input of 25 units

arrives in period eight, then we have x9 = [y8, 25]= [0,2,1,25].

If the system is empty at the beginning of period t, we set

xt = ∅ or xt = [0, … , 0]. Under the context of our model,

sequences [0, … , 0, x[l], … , x[1]] and [x[l], … , x[1]] contain

essentially the same information and can thus be used inter-

changeably. With that said, the state space of xt can be defined

by

Φ = {∅} ∪
∞⋃

l=1

{[x[l], … , x[1]] ∶ x[l] > 0]}. (1)

Together with the states of the underlying Markov chain of the

input process, we define the set of potential system states as

Ω = Φ× {1, 2, … , M} for (xt, it). Recall that it is the state of

the input process. For our analysis, the following operations

associated with sequences in Φ are used.

Definition 3.1 For any pair of sequences

x = [x[l], x[l− 1], … , x[1]] and y = [y[k], y[k− 1],

HE ET AL. 491

… , y[1]] in Φ, we define the following opera-

tors:

i. sequence concatenation: x⌢ y = [x[l], x[l− 1],

… , x[1], y[k], y[k− 1], … , y[1]].

ii. sequence addition: x+ y = [x[l], … , x[k+ 1],

x[k] + y[k], … , x[1] + y[1]], if l≥ k.

iii. sequence sum: ∣ x ∣=
∑l

j=1 x[j];
iv. sequence length: L(x) = l. (Note: x[l] > 0.)

For x = [x[l], x[l− 1], … , x[1]] and y = [y[l],

y[l− 1], … , y[1]], x≤ y if and only if x[j] ≤ y[j], for

all j = 1, 2, … , l. Furthermore, we define par-

tial order ≤d, that is, vector dominance, as: x≤dy
if
∑j

i=1
x[l+1−i] ≤

∑j
i=1

y[l+1−i], for j = 1, … , l.
For example, if x = (1,1,1.2) and y = (2,0.5,1),

we have x≤dy but not x≤ y. For two sequences

in Φ with different lengths, we attach zeros

to the left of the shorter one to make the two

sequences equal in length. In this way, we allow

the comparison of any pair of sequences in Φ. If

x≥ y, we define z = x− y, for which z satisfies

x = z+ y. We also note that x≤ y implies that

x≤dy.

3.3 Decision rules and clearing policies

At the beginning of each period, we must decide whether to

continue accumulating inputs, clear some outstanding inputs,

or clear everything in the system. Let t be the set of all avail-

able actions at the beginning of period t. Since we can clear

any amount of outstanding inputs, actions to be chosen in

period t depend on the pre-clearing system content xt as well

as the state of the input process it. We refer to the decision rule

in period t as the clearing rule, which specifies the clearing

action that must take place in period t. Thus, a clearing rule

rt is a mapping from the system state space Ω to the available

action set t, that is, rt :Ω→t, where rt(xt, it) = at ∈t
implies that, if the system state is (xt, it) at the beginning of

period t, action at must be taken. We denote the set of all such

clearing rules by t, for t = 1, 2, … , N.

We call an action a partial clearing if only some outstanding

inputs are cleared. If an action clears all existing outstanding

inputs, we call it an on-off control (a.k.a. bang-bang control).
In the case of on-off control, we define t = {0, 1} such

that at = 0 means to continue to accumulate in period t and

at = 1 means to clear the system immediately. Consequently,

rt(x, i) = 0 for (x, i)∈Ω (or rt(x, i) = 1) means continue to

accumulate (or clear the system), given that system state is

(x, i) at the beginning of period t. Here are a few examples of

clearing rules.

Example 3.3.1 The classical quantity thresh-

old rule: rt(xt, it) = 0, if |xt |< 5; 1, otherwise.

This clearing rule is of the on-off type, and

depends only on the total quantity of all existing

inputs.

Example 3.3.2 The classical age threshold

rule: rt(xt, it) = 0, if L(xt)< 4; 1, otherwise. This

clearing rule is also of the on-off type, and

depends only on the age of the oldest (nonzero)

input.

Example 3.3.3 Hybrid rule (w, T): For w = 3

and T = 3, rt(xt, it) = 0, if ∣xt ∣ < 3 and L(xt)< 3;

1, otherwise. This clearing rule is of the on-off

type, and depends on both the total quantity and

the age of the oldest input.

A clearing policy 𝜋 specifies the clearing rules to be used

at all decision epochs. Such a policy consists of a series of

clearing rules, that is, 𝜋 = (r1, r2, … , rN), where rt ∈t, for

all t = 1, 2, … , N.

3.4 Cost structure and the expected Total costs

Two types of costs are relevant to our analysis of stochastic

clearing systems: a delay penalty cost, a.k.a. the disutility of

waiting, or the holding cost in many practical applications, is

incurred during every period that an input remains in the sys-

tem; and a fixed clearing cost that is incurred when an actual

clearing takes place.

We assume that the delay penalty cost in each period is cal-

culated based on the post-clearing system content yt. Denote

the delay penalty cost by Ht for period t. Then Ht is a function

defined on Φ (the state space of yt). For most clearing systems

considered in the literature, Ht is a linear function of the total

accumulated quantity, for example, Ht = 0.1|yt |. In our model,

since yt contains other information in addition to the accumu-

lated quantity, more choice of Ht can be introduced and used

in the analysis of clearing systems. Here are a few examples

of the delay penalty cost. Let yt = [y[l], … , y[1]].

Example 3.4.1 Ht(yt) = 0.1|yt |
2 (a nonlinear

function of the total accumulated quantity).

Example 3.4.2 Ht(yt) = 0.1(L(yt))
2 (a non-

linear function of the longest delay).

Example 3.4.3 Ht(yt) = 1.5
∑l

j=1 j2 ⋅y[j]+2.5∑l
j=1 (j ⋅ y[j])2, if ∣yt ∣ ≤L, and Ht(yt)=∞, other-

wise, where L is a positive constant (a nonlinear

function in both the quantity and delay of each

input with a clearing capacity constraint).

For arbitrary t, we assume that the fixed clearing cost in that

period is given by the function Kt(wt) = k̂t ⋅ 𝛿{|wt|>0}, where

wt = xt − yt (which is the content cleared in period t) and 𝛿{⋅}

492 HE ET AL.

is the indicator function. Here are a few examples of the fixed

clearing cost.

Example 3.4.4 Kt(wt) = k̂ ⋅ 𝛿{|wt|>0} (a con-

ventional fixed cost function).

Example 3.4.5 Kt(wt) = (k1+k2max{0,N−t}
+k3∕t)𝛿{|wt|>0} (a nonlinear function, decreasing

in time).

We assume that the entire system has to be cleared at a

fixed cost by the end of period N (or at the beginning of

period N + 1). We denote by 
𝜋,𝛼
<t1,t2>(x, i) the expected total

cost incurred in periods t1, t1 + 1, … , t2, where (x, i) is

the initial system state in period t1, <t1, t2> is the time

horizon, 𝜋 is the clearing policy, and 𝛼 is the discount fac-

tor (0<𝛼 ≤ 1). Utilizing the above notation, the expected
total discounted cost over the entire planning horizon can be

calculated by


𝜋,𝛼

<1,N>
(x, i)

= E

[N∑
t=1

𝛼t−1(Ht(yt) + Kt(wt))|(x1, i1) = (x, i)

]
. (2)

In Sections 4 and 5, we develop algorithms to compute the

clearing policy 𝜋 that minimizes the above cost function.

4 OPTIMAL POLICIES OVER A FINITE
HORIZON

In this section, we study the stochastic clearing problem over

a finite planning horizon (that is: N <∞). The objective is

to find the clearing policy that minimizes the expected total

cost of Equation (2) with discount factor 𝛼 = 1. For that pur-

pose, we first formulate and analyze our problem as a MDP
(Puterman, 2005).

Given a clearing policy 𝜋 = (r1, r2, … , rN), the cost

incurred in period t is given by

u𝜋
t (x, i) = Ht(y) + Kt(x − y), (3)

where y is the post-clearing system content, which is deter-

mined by the clearing rule rt(x, i), if the initial system state

is (x, i) in period t. Subject to the clearing policy 𝜋, the

process {(xt, it), t = 1, 2, … } is a Markov chain. At an arbi-

trary decision epoch n, the expected total cost starting from

period n until the end of the planning horizon can be rewrit-

ten as 𝜋
<n,N>

(x, i) = E

[∑N
t=n u𝜋

t (xt, it) ∣ (xn, in) = (x, i)
]
, for

all n = 1, 2, … , N. For any given initial system state (x, i)
in period n, the Markovian property of {(xt, it), t = 1, 2, … }

allows us to write 𝜋
<n,N>

(x, i) recursively as

𝜋
<n,N>

(x, i) = u𝜋
n (x, i)

+ E

[
𝜋
<n+1,N>

(xn+1, in+1) ∣ (xn, in) = (x, i)
]
. (4)

Recall that everything has to be cleared at constant cost by the

end of the planning horizon. Thus, we have 𝜋
<N+1,N>

(x, i) =
KN+1(x).

Denote by 𝜋∗ = (r∗
1
, r∗

2
, … , r∗N), the clearing policy that

minimizes the expected total cost during the entire planning

horizon, given that the initial system state is (x, i). That is,

𝜋∗

<1,N>
(x, i) ≤ 𝜋

<1,N>
(x, i) for any policy 𝜋. By the principle

of optimality, the following optimality equations hold for the

optimal clearing policy 𝜋*:

𝜋∗

<t,N>
(x, i) = inf

y≤x

{
Kt(x − y) + Ht(y)

+ E

[
𝜋∗

<t+1,N>
(y ⌢ qt, it+1) ∣ it = i

]}
, (5)

for t = 1, 2, … , N. Note that y is the post-clearing system

content, qt is the input in period t, and xt+ 1 = y⌢ qt in the

above equation. We define the value function for the problem

over the time interval <t, N>, with initial system state

(xt, it) = (x, i), to be Vt(x, i) = inf𝜋∈R1×R2×···×RN
𝜋
<t,N>

(x, i).
Then Equation (5) can be written as: VN + 1(x, i) = KN + 1(x),

and

Vt(x, i) = inf
y≤x

{Kt(x − y) + Ht(y)

+E

[
Vt+1

(
y ⌢ qt, it+1

)|it = i
]}

,

for t = 1, 2, … ,N. (6)

Since the cost functions depend on both the quantities and

the elapsed times of individual inputs, the structure of the

optimal clearing policy can be complicated. For instance,

the optimal clearing decision for states x1 = [5,0,1] and

x2 = [1,0,5] can be different, even though they have the same

accumulated quantity. The optimal clearing policy can be

found by solving Equation (6) recursively. However, the state

space for searching the optimal policy can be too big, due to

its tree structure.

In the rest of this section, upon imposing some realistic

conditions on the cost functions, we identify the structure of

the optimal policy (Section 4.1) and develop an algorithm for

computing the optimal policy (Section 4.2).

4.1 Characterization of the optimal policy

In this subsection, we establish the existence and some prop-

erties of the optimal clearing policy if the cost functions

satisfy:

Condition 4.1

i. k̂t ≥ k̂t+1 ≥ · · · ≥ k̂N+1 = 0, for t = 1, 2, … ,

N.

ii. 0 = Ht(∅)≤Ht(x′)≤Ht(x), for all x′≤ dx∈Φ
and t = 1, 2, … , N. (Recall that “∅” means

an empty system.)

Condition 4.1(i) assumes that the clearing cost is nonin-

creasing in time, which is consistent with the fact that, as the

HE ET AL. 493

system evolves, it becomes more efficient in operation so that

the fixed costs are nonincreasing. Condition 4.1(ii) assumes

that the delay penalty costs are increasing in both the quan-

tities and delay times (ages) of outstanding inputs, which is

realistic in practice. Those are an important contribution of

the paper, which is supported by examples in inventory man-

agement and shipment consolidation as we have discussed in

Section 1.

Defining

Wt(y, i) = Ht(y) + E[Vt+1(y ⌢ qt, it+1)|it = i],
for t = 1, 2, … ,N, (7)

we can rewrite the dynamic program (6) as VN + 1(x, i) = 0,

and

Vt(x, i) = inf
y≤x

{Kt(x − y) + Wt(y, i)},

for t = 1, 2, … ,N. (8)

Under Condition 4.1, it can be shown that there exists an

on-off type optimal clearing policy.

Theorem 4.1 Under Condition 4.1, there
exists an on-off optimal clearing policy, that is,

if a clearing is triggered then all accumulated
inputs must be cleared, such that

Vt(x, i) = min{Kt(x) + Wt(∅, i),Wt(x, i)},
for t = 1, 2, … ,N. (9)

Although the on-off feature of the optimal policy has been

found, the actual representation of that policy can be very

cumbersome. However, we next show that, subject to the

following Condition 4.2 on the delay penalty function, the

optimal policy can actually be a state-dependent threshold
policy, which is defined as

Definition 4.1 A state-dependent threshold

clearing policy in a finite horizon is denoted

as 𝜋𝜏 = (r𝜏
1
, … , r𝜏N). For period t, the clear-

ing rule r𝜏t is determined by a set of parameters

{𝜏 t, 1, … , 𝜏 t, M}, for which we have

r𝜏t (x, i) =

{
0, if Ht(x) ≤ 𝜏t,i;
1, otherwise,

(10)

for all (x, i)∈Ω. (Note that Ω is defined right

after Equation (1).)

Such a policy is parameterized by a single number (for each

period t and i = 1, 2, … , M), as opposed to depending on the

set of all possible states.

Condition 4.2 Ht(x)≤Ht(y) implies

Ht+ 1(x⌢ q)≤Ht+ 1(y⌢ q), for t = 1, 2, … , N,

x, y∈Φ, and 0≤ q≤Q. (Note that Φ is defined

in Equation (1).)

We would like to point out that (a) since x≤dy is not required

in Condition 4.2, that condition is not a consequence of part

(ii) in Condition 4.1; and (b) Condition 4.2 is realistic in

practice. Under Conditions 4.1 and 4.2, it can be shown that

there exists a state-dependent threshold type optimal clearing

policy.

Theorem 4.2 If Conditions 4.1 and 4.2 are
satisfied, then there exists a state-dependent
threshold optimal clearing policy denoted as
𝜋𝜏∗ . Specifically, for each underlying state i = 1,

2, … , M, there exists a non-empty sequence
x∗t (i) such that

x∗t (i) = arg max
x∈Φ

{Ht(x) ∶ Wt(x, i) ≤ Wt(∅, i) + Kt(x)}, (11)

and 𝜏∗t,i = Ht(x∗t (i)), for all i = 1, 2, … , M and

t = 1, 2, … , N.

We note that the sequence x∗t (i) is used only for comput-

ing 𝜏∗t,i. Parameters of the optimal clearing policy, that is,

{𝜏∗t,1, … , 𝜏∗t,M}, are independent of the current state x. It is

easy to see that, under Conditions 4.1 and 4.2, if r𝜏∗t (x, i) = 1

and x≤dy, we must have if r𝜏∗t (y, i) = 1. This implies that,

for any state x in the tree-structured state space, if the opti-

mal decision is to clear all, then the optimal decision for any

off-spring of x is to clear all.

Denote by ek a vector with all elements being zero except

for the kth element, which is one. The following property

provides interesting insight into the structure of the optimal

policy and is used in developing algorithms for computing the

optimal policy.

Corollary 4.3 Under Conditions 4.1 and 4.2,

if r𝜏∗t (x, i) = 1, we must have (i) r𝜏∗t (x+ek, i) = 1;

(ii) r𝜏∗t (x ⌢ q, i) = 1, for all q, x, and i; and (iii)
r𝜏∗t (x + ej − ek, i) = 1, for j< k.

Proof By part (ii) of Condition 4.1, Ht(x)

≤Ht(x⌢ q). By Theorem 4.2, (i) and ii) follow.

Since x≤dx+ ej − ek, for j< k, by Condition 4.1,

Ht(x)≤Ht(x+ ej − ek). By Theorem 4.2, (iii)

follows. ▪

4.2 Computing the optimal clearing policy

Due to the complexity of the state space Ω, the search for such

an optimal policy is not straightforward and is challenging,

especially for systems with a large state space. Fortunately,

under Conditions 4.1 and 4.2, Theorems 4.1 and 4.2 imply

that the optimal policy is of the on-off type and of the

state-dependent threshold type. To find the optimal policy,

our idea is to organize system states into a tree structure (see

Figure 1), and explore as many tree branches as possible. At

the same time, we find thresholds to stop the search process

along individual branches, which avoids going too far down

494 HE ET AL.

FIGURE 1 A sample tree of Ψ(rt) with Q = 2

the tree. In this section, we apply the branch-and-bound idea

to develop a search procedure in the tree-structured system to

find the optimal policy. Due to Theorem 4.1, we now can limit

the admissible policies to the set of on-off control policies.

First, we develop a method for the construction of the sys-

tem state space. At the beginning of each period (before

clearing), the system state is (xt, it), for t = 1, 2, … . That

pre-clearing system state process (xt, it) can be modeled

as a GI/M/1-type Markov chain with a tree structure (see

Figure 1). By definition, the receiving state is affected by the

clearing rule rt− 1 in the previous period. To determine which

pre-clearing system contents can ever be attained in at least

one underlying state in period t, we write

Ψ(rt−1) =
⋃

q∈{0,… ,Q}

{
x⌢ q ∶x∈Φ∶

M∏
i=1

rt−1(x, i) = 0

}
. (12)

For computational purposes, we collect the underlying state

space as Ψ(rt−1) × {1, 2, … ,M}, for t = 1, 2, … , N. We thus

group the system states with the same system contents, and

use Ψ(rt−1) as the “level” set to identify the system content

without needing to specify the underlying states.

For the clearing rule in Example 3.3.3, and with Q = 2 for

the input process, the subtree corresponding to Ψ(rt) is illus-

trated in Figure 1. Recall that the policy is of on-off type and

clearing takes place if ∣x ∣ ≥ 3 or L(x) = 3 for state x. For leaf

nodes {[1,0,0], [1,0,1], [1,1,0], [2,0,0]} in Figure 1, we have

L(x) = 3; for leaf nodes {[1,1,1], [1,1,2], [2,0,2]}, L(x) = 3

and ∣x ∣ ≥ 3, and for {[1, 2], [2, 1], [2, 2]}, ∣x ∣ ≥ 3. For those

states, the system state becomes ∅ right after the next clear-

ing decision, and it becomes ∅, [1], or [2] at the end of the

time period. Due to the on-off property of the clearing rule,

the process xt can traverse down at most one level in the tree,

but can go back to the root node ∅ from all leaf nodes. That is

why the process (xt, it) is called a GI/M/1-type Markov chain.

Now we discuss how particular properties of clearing rules

affect the structure and size of the system state space. First,

let us call a clearing rule “logical” if it satisfies.

Condition 4.3 (Logical condition) At any

decision epoch t = 1, 2, … , N, and underlying

state i = 1, 2, … , M,

i. rt(∅, i) = 0 with certainty;

ii. for any x, y∈Φ, if rt(x, i) = 1, then

rt(x⌢ y, i) = 1;

iii. for any x≤ y∈Φ, if rt(x, i) = 1, then

rt(y, i) = 1.

Proposition 4.4 Under Conditions 4.1 and
4.2, the clearing rule rt in period t satisfies
Condition 4.3, and Ψ(rt) can be mapped to a
connected subtree of Φ.

Proof That rt is logical is an immediate con-

sequence of Corollary 4.3. Next, we prove that

the tree for Ψ(rt) is actually a connected subtree

for Φ. Part (i) of Condition 4.3 implies that ∅,

the root node for Φ, can always be the root node

for Ψ(rt). Part (ii) of Condition 4.3 suggests that

starting from ∅ and proceeding on any down-

ward path of Φ, if a node x is not in Ψ(rt), then

no successor of x, that is, x⌢ y, is in Ψ(rt) either.

In other words, there is a “cut-off” point on

each downward path of Φ, and the subtree can

be built by excluding the nodes beyond those

cut-off points. Consequently, we have a subtree

in which every node is reachable from, and can

reach, state ∅. This completes the proof. ▪

Theoretically, the system state space can be infinitely large

if none of the clearing criteria can ever be attained. However,

in practice, a clearing policy needs to be “feasible” so that the

system is cleared in finite time. For any period t, we define

the maximum cumulative quantity and the oldest input age

allowed by clearing rule rt, respectively, as follows:

Q(rt) = max
(x,i)∈Ω

{|x| ∶ rt(x, i) = 0};

L(rt) = max
(x,i)∈Ω

{L(x) ∶ rt(x, i) = 0}. (13)

Here is the condition for a clearing rule to be feasible.

Condition 4.4 (Feasibility condition) For a

given clearing rule rt in period t, Q(rt) and L(rt)
are finite.

Proposition 4.5 Under Conditions 4.1 and
4.2, the clearing rule rt in period t satisfies Con-
dition 4.4, that is, the set Ψ(rt) is finite, and the
size of that set grows in the order of (QL(rt)).

Proof By Theorems 4.1 and 4.2, it is easy to

see that Condition 4.4 is satisfied. If L(rt) <

∞, then based on Equation (13), all sequences

x ∈ Ψ(rt) must have finite length. Each entry

in a sequence is discrete and finite according

to our assumptions of discrete and finite input

HE ET AL. 495

quantities. Since we can make all sequences into

equal length by attaching zeros to the left, the

total number of such sequences grows in the

order of (QL(rt)). ▪

For discrete time and discrete quantity models,

the finite tree structure of Ψ(rt) allows us to use the

breadth-first-traversal (BFT) procedure from graph the-

ory to construct and navigate the trees. The procedure for

constructing Ψ(rt) is described below.

BFT procedure: Constructing Ψ(rt)

Step 1 Initialize a list V , and store ∅ and numbers 1, 2,

… , Q in V .

Step 2 Initialize a list U, and store numbers 1, 2, … ,

Q in U.

Step 3 If U is empty, go to Step 5; otherwise, read

and delete the next entry from U according to

the first-in-first-out (FIFO) rule and denote it

as x.

Step 4 For any underlying state i = 1, 2, … , M, if

rt(x, i) = 0, enter x⌢ q for each q = 0, 1, … ,

Q into both lists V and U; go back to Step 3.

Step 5 Output the sequences in V as Ψ(rt).

Recall that the underlying process {it, t = 1, 2, … } is an

irreducible Markov chain, and the input process {(qt, it), t = 1,

2, … } is also Markovian. For an on-off control clearing rule

rt, we have yt = xt ⋅ (1− rt(xt, it)), wt = xt − yt = xt ⋅ rt(xt, it),
and xt+ 1 = xt ⋅ (1− rt(xt, it))⌢ qt, which only depend on

(xt, it), qt, and rt. Recall that {(xt, it), t = 1, 2, … } is a discrete

time Markov chain, whose transitions are time-dependent if

𝜋 is not stationary. There are two types of transitions for that

Markov chain, for all x∈Φ, i, j = 1, 2, … , M and q = 0, 1,

… , Q:

i. (x, i)→ (x⌢ q, j): starting from system state

(x, i), no clearing is required at the begin-

ning of the current period, and a quantity q
is received during the period;

ii. (x, i)→ (q, j): starting from system state (x,

i), the system is cleared at the beginning of

the current period, and quantity q is received

during the period.

The one-step transition probabilities between (xt, it) and
(xt+ 1, it+ 1) = (x′

, j) are determined by rt and can be written
as:

P(x,rt)
(x,i),(x′ ,j) =

⎧⎪⎨⎪⎩
a(x,rt)
(x,i),(x⌢q,j) = (1 − rt(x, i))[Dq]i,j, if x′ = x ⌢ q;

b(x,rt)
(x,i),(q,j) = rt(x, i)[Dq]i,j, if x′ = q;

0, otherwise,

(14)

where a(x,rt)
(x,i),(x⌢q,j) corresponds to the transition probabilities

in period t without clearing, and b(x,rt)
(x,i),(q,j) corresponds to the

transition probabilities in period t with clearing.

We can collect the underlying states and express the tran-

sition probabilities in matrix form. More specifically, if

x′ = x⌢ q, we have

P(x,rt)
x,x′ = A(x,rt)

x,x⌢q =

(
1 − rt(x, 1)

⋱
1 − rt(x,M)

)
Dq; (15)

while if x′ = q, we have

P(x,rt)
x,x′ = B(x,rt)

x,q =

(rt(x, 1)
⋱

rt(x,M)

)
Dq; (16)

otherwise, P(x,rt)
x,x′ = 0. Together, we have

∑Q
q=0

(A(x,rt)
x,x⌢q +B(x,rt)

x,q)
= D. Note that P(x,rt)

x,x′ are the block matrices in P(x,rt), which is

the transition probability matrix for the Markov chain {(xt, it),
t = 1, 2, … }.

With the transition probabilities obtained, the expected

total cost function 𝜋
<n,N>

(x, i) defined in Equation (4) can be

computed as

𝜋
<n,N>

(x, i) = u𝜋
n (x, i)

+
∑

(x′,j)∈Ψ(rn)×{1,2,… ,M}
P(x,rn)
(x,i),(x′,j)

𝜋
<n+1,N>

(x′, j), (17)

where

u𝜋
t (x, i) = Ht((1 − rt(x, i))x) + Kt(rt(x, i)x), (18)

for the on-off control function rt(x, i).
For a given policy 𝜋, the expected total cost 𝜋

<1,N>
(x, i)

can be calculated by using a backward scheme that employs

Equations (14), (17), and (18).

Finally, based on Theorem 4.1 and the tree structure of the

system state space, Algorithm I utilizes the value iteration

method for MDP to construct the optimal policy for cases

satisfying Condition 4.1:

Algorithm 1. Finite horizon optimal policy algorithm

I.1 If HN(x) > k̂N , let rN(x, i) = 1; otherwise, let rN(x, i) = 0.

Use the BFT Procedure to create Ψ(rN).

I.2 For each (x, i) ∈ Ψ(rN) × {1, 2, … ,M}, set VN + 1

(x, i) = KN + 1(x). Initialize counter n = N.

I.3 If Hn−1(x) > k̂n−1, let rn− 1(x, i) = 1; otherwise, let rn− 1

(x, i) = 0. Use the BFT Procedure to create Ψ(rn−1).

I.4 For each x ∈ Ψ(rn−1), j = 1, 2, … , M, and q = 0, 1, … ,

Q, create y = x⌢ q and look up Vn+ 1(y, j). If not found, set

Vn+ 1(y, j) = Kn+ 1(y)+Vn+ 1(∅, j).
I.5 Compute Wn(x, i) and Wn(∅, i) by Equation (7). If Wn(x, i)

>Wn(∅, i)+Kn(x), record Vn(x, i) = Wn(∅, i)+Kn(x) and

assign r∗n(x, i) = 1; otherwise, record Vn(x, i) = Wn(x, i)
and assign r∗n(x, i) = 0. Set n≔ n− 1.

I.6 If n = 0, stop and report r∗t (x, i) and Vt(x, i), for all (x, i) ∈
Ψr∗t × {1, 2, … ,M} and t = 1, 2, … , N; otherwise, go

back to Step I.3.

We note that, if Condition 4.2 also holds, we can output 𝜏∗t (i)
instead of r∗t (x, i).

496 HE ET AL.

5 OPTIMAL POLICIES OVER AN
INFINITE HORIZON

We now consider the stochastic clearing problem over an

infinite planning horizon, with the expected total discounted

cost as our objective function. We assume that the discount

factor 𝛼 < 1 and the cost functions and decision rule are

time homogenous, that is, Ht(x) = H(x), Kt(x) = K(x), and

rt(x, i) = r(x, i), for t = 1, 2, … . The set of all admissible

decision rules is denoted as R (ie, Rt = R, for t = 1, 2, …). A

clearing policy satisfying rt = r, for all t = 1, 2, … , is called a

stationary policy. Since we consider only stationary policies,

we shall call any admissible decision rule r a clearing policy.

In this section, we characterize the optimal clearing policy.

As in Section 4, the expected total discounted cost over the

infinite planning horizon can be found by


r,𝛼
<1,∞>

(x, i)

= E

[∞∑
t=1

𝛼t−1(H(yt) + K(wt))|(x1, i1) = (x, i)

]
. (19)

We assume that the optimal clearing policy r* must satisfy


r∗,𝛼
<1,∞>

(x, i) ≤ 
r,𝛼
<1,∞>

(x, i), for all r ∈R. Existing theorems

on dynamic programming and MDP allow us to generalize

the results for the finite horizon problem to an infinite hori-

zon by extending the length of the planning horizon N →∞
(Beyer et al., 2010; Iglehart, 1963; Puterman, 2005). Assume

that the cost functions are stationary over time. We can drop

the subscript t from Equation (5) and express the optimality

equations for the infinite horizon problem as


r,𝛼
<1,∞>

(x, i)

= inf
y≤x

{
K(x − y) + H(y) + 𝛼E[r,𝛼

<1,∞>
(y ⌢ q, j) ∣ i]

}
.

(20)

Note that, abusing notation a bit, we use q and j as random

variables for the input quantity per period and the state of the

underlying Markov chain, respectively.

Condition 5.1, whose interpretation for the cost functions

is similar to that of Condition 4.1, is required to establish our

infinite-horizon results.

Condition 5.1 0 = H(∅)≤H(x′
)≤H(x), for

all x′
≤dx∈Φ.

To prove the existence of an optimal clearing policy, we use

successive approximations of the infinite horizon problem by

“extending” the finite-horizon problem. First, let us examine

the “first-n-period truncation” of the infinite horizon problem.

Denote the expected total discounted cost for the truncated

problem as


r,𝛼
<1,n>(x, i) = E

[n∑
t=1

𝛼t−1ur(xt, it)

]
, (21)

for all (x, i)∈Ω. Next, define the value function for the trun-

cated problem as V∞
n (x, i) = infr∈R

r,𝛼
<1,n>(x, i). Naturally, the

value function for this n-stage finite horizon problem exists,

and can be computed recursively as V∞
0
(x, i) = 0, and

V∞
n (x, i)=min

y≤x

{
K(x−y)+H(y)+𝛼E[V∞

n−1
(y ⌢ q, j) ∣ i]

}
.

(22)

Now we define the value function of the infinite hori-

zon problem as V(x, i) = limn→∞infr∈R
r,𝛼
<1,n>(x, i). Since

infr∈R
r,𝛼
<1,n>(x, i) = V∞

n (x, i), if we can prove that V∞
n (x, i)

converges as well, then we know that the value function for

the infinite horizon problem exists, for which we find

V(x, i) = lim
n→∞

V∞
n (x, i) = lim

n→∞


r∗,𝛼
<1,n>(x, i) = 

r∗,𝛼
<1,∞>

(x, i). (23)

Under Condition 5.1, it can be shown that V∞
n (x, i) ≤

V∞
n+1

(x, i), for all (x, i)∈Ω and n = 0, 1, … .

Next, we shall establish an upper bound on V∞
n (x, i). One

such possible bound is for the case that the maximum input

quantity is received in each period, and the system is also

cleared that often. A clearing cost of k̂ is thus incurred every

period; no delay penalty is ever charged, since inputs are

cleared at the earliest possible time. For this case, if 0≤ 𝛼 < 1,

it is true that

lim
n→∞

sup
r∈R


r,𝛼
<1,n>(x, i) ≤ k̂ + 𝛼k̂

1 − 𝛼
= k̂

1 − 𝛼
< ∞.

With the established upper bound, the results obtained in

Section 4.1 for the finite horizon problem continue to hold

for the infinite horizon problem. We summarize them in the

following theorems.

Theorem 5.1 Under Condition 5.1,

lim
n→∞

V∞
n (x, i) exists, and V(x, i) = limn→∞V∞

n

(x, i) is a solution to the optimality Equations
(20), for all (x, i)∈Ω.

Theorem 5.2 Under Condition 5.1, there
exists a state-dependent threshold optimal
clearing policy denoted by a nonnegative vector
𝜏*. More specifically, there exists a non-empty
sequence x*(i) such that

x∗(i) = arg max
x∈Φ

{x∶ W(x, i) ≤ K(x) + W(∅, i)};

𝜏∗(i) = H(x∗(i)), (24)

for all i = 1, 2, … , M. If r*(x⌢ q, i) = 0, then
r*(x, i) = 0, for all x, q, and i.

The infinite horizon stochastic clearing problem can be

solved as an infinite horizon discounted MDP. We can use

value iteration or policy iteration to calculate its value func-

tion and optimal policy parameters. Similar to the finite

horizon case, an algorithm can be developed for computing

the optimal clearing policy. Details are omitted.

HE ET AL. 497

6 NUMERICAL EXAMPLES

In this section, we analyze three examples to demonstrate

the added value of the stochastic clearing model, espe-

cially the time dependent cost structure, introduced in this

paper. In Example 6.1, we compare models with linear

and nonlinear delay penalty cost functions. The observa-

tion is that a model with a nonlinear structure may not be

approximated well by models with a linear cost structure.

In Example 6.2, we compare the optimal policy to conven-

tional hybrid policies. The observation is that the (best) con-

ventional hybrid (time-and-quantity) policies may perform

poorly. In Example 6.3, we consider a case with an infinite

planning horizon and an input process with three states. The

example demonstrates that the optimal actions and the corre-

sponding expected total cost can be very sensitive to the state

of the input process.

Example 6.1 We consider a clearing system

with a finite planning horizon N = 10: (i) The

input process is a compound renewal process

with M = 1, Q = 5, D0 = 0.1, D1 = 0.2,

D2 = 0.3, D3 = 0.1, D4 = 0.2, and D5 = 0.1;

(ii) the delay-penalty cost function is Ht(yt) =
𝜇
∑l

j=1 j2y[j] with 𝜇 = 1.5; and (iii) the fixed

clearing cost function is Kt(wt) = 10𝛿{|wt|>0}.

The delay-penalty costs per unit time of each individual

input are increasing in time, which captures the urgency to

clear those inputs that have been in the system for a longer

interval. We use this example to demonstrate the necessity to

use our model to find the optimal clearing policy. We conduct

the analysis in three steps.

(a) First, we find the optimal clearing policy and the min-

imum expected total costs. Since Conditions 4.1 and 4.2 are

satisfied, the optimal clearing policy 𝜋 is of the on-off type.

The optimal clearing rule and its corresponding expected cost

for each initial state x at the beginning of period 1 are pre-

sented in Table 2. Note that for any state x not listed in Table 2,

the optimal clearing rule is 1 (ie, to clear immediately), with

an expected cost V (1.5)
1

(x) = 76.6459. The optimal actions for

stages n = 2, 3, … , N = 10 can be found similarly by setting

the planning horizon N to be 9, 8, … , 2, and 1. Details are

omitted.

(b) Now, we redefine the delay-penalty cost function as

Ĥt(yt) = 𝜇
∑l

j=1 𝑗𝑦[j]. This means that the delay penalty cost

is charged at a constant rate (ie, a linear function in the delay

time of each input), which is the conventional accounting

scheme for delay penalty costs. We denote by 𝜋(𝜇) the opti-

mal clearing policy. For 𝜇 = 1.5, we find the optimal clearing

policy and in turn the expected total cost V̂ (𝜇)
1

(x). Results are

shown in Table 3. Note that for all other states x (absent from

this table), the optimal clearing rule is to clear immediately

and the corresponding expected total cost is 75.7539.

(c) Now, we apply the clearing policy 𝜋(𝜇) to the original

model and similarly find its expected total cost Ṽ (𝜇)
1

(x). Since

𝜋(𝜇) may not be optimal in the original model, we must have

Ṽ (𝜇)
1

(x) ≥ V (𝜇)
1

(x) for all x and 𝜇. The difference between the

Ṽ (𝜇)
1

(x) and V (𝜇)
1

(x) measures the modeling error caused by

using the linear accounting scheme for the delay penalty cost.

For a fair comparison, we let 𝜇 go from 0.5 to 4.5 and com-

pute the respective V (𝜇)
1

(x) and Ṽ (𝜇)
1

(x). For example, we show

the results for Ṽ (𝜇)
1

(∅)−V (𝜇)
1

(∅) in Table 4. When 𝜇 decreases,

the delay penalty cost decreases. On the other hand, the differ-

ence between V (𝜇)
1

(∅) and Ṽ (𝜇)
1

(∅) tends to be larger. Thus, it is

more important to use our model for such cases. This example

demonstrates that the performance of the clearing policy 𝜋(𝜇)

found by using the Ĥt(x) can be significantly worse than the

actual optimal clearing policy 𝜋. This example also justifies

the added complexity in the cost functions, and the usefulness

of the methods and algorithms developed in this paper.

Example 6.2 We consider a general clear-

ing system with N = 8. The input process is a

Markov modulated arrival process given as

D0 =
(

0.09 0.01
0.06 0.54

)
, D1 =

(
0.27 0.03
0.03 0.27

)
,

D2 =
(

0.54 0.06
0.01 0.09

)
.

The delay penalty cost is given as Ht(yt) = 0.1∑l
j=1 (j ⋅ y[j])2 with l = |yt |. The fixed clearing cost is Kt(wt) =

(2 + 0.5max{0, 4 − t}) ⋅ 𝛿{|wt|>0}.

TABLE 2 Summary of optimal clearing rule in period 1 for Example 6.1 (original model)

x ∅ [1] [2] [3] [4] [5] [1,0] [1,1]

r∗
1
(x) 0 0 0 0 0 1 0 1

V (1.5)
1

(x) 56.8383 61.9062 63.4939 64.9939 66.4939 66.8383 66.4939 66.8383

TABLE 3 Summary of optimal clearing rule in period 1 for Example 6.1 (modified model)

x ∅ [1] [2] [3] [4] [1,0] [1,1] [1,2] [2,0]

r̂∗
1
(x) 0 0 0 0 0 0 0 0 0

V̂ (1.5)
1

(x) 55.8954 60.0074 62.3867 63.9369 65.4369 62.1320 63.9369 65.4369 65.4369

498 HE ET AL.

TABLE 4 Ṽ (𝜇)
1
(∅) − V1(∅) for ¯ = 0.5,1.0, … ,4.0, and 4.5 for Example 6.1

𝝁 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

V (𝜇)
1

(∅) 42.5899 50.7137 56.8383 61.4904 64.8961 67.5316 70.0477 72.4172 73.7083

Ṽ (𝜇)
1

(∅) 46.8378 52.7534 58.4119 62.3613 65.3802 68.1498 70.6092 73.1517 73.8417

Ṽ (𝜇)
1

(∅) − V (𝜇)
1

(∅) 4.2479 2.0397 1.5736 0.8709 0.4841 0.6182 0.5615 0.7345 0.1334

TABLE 5 Summary of optimal clearing rule and costs in
period 1 for Example 6.2

x r∗1 (x, 1) r∗1 (x, 2) V1(x, 1) V1(x, 2)

∅ 0 0 8.1006 5.7630

[1] 0 0 8.9449 7.4782

[2] 0 0 10.1333 8.5407

[1, 0] 0 0 9.7820 8.3735

[1, 1] 0 0 10.1680 8.6207

[1, 2] 0 0 10.5333 8.9407

[2, 0] 0 1 11.3333 9.2630

[2, 1] 0 1 11.4333 9.2630

[2, 2] 1 1 11.6006 9.2630

[1,0,0] 0 0 10.6333 9.0407

[1,0,1] 0 0 10.7333 9.1407

[1,0,2] 0 1 11.0333 9.2630

[1,1,0] 0 1 11.0333 9.2630

[1,1,1] 0 1 11.1333 9.2630

[1,1,2] 0 1 11.4333 9.2630

All other states 1 1 11.6006 9.2630

Conditions 4.1 and 4.2 are satisfied, and the optimal clear-

ing policy is of the on-off type. The optimal clearing policy

and the related value functions for period 1 are summarized

in Table 5. Note that for all other states x, the optimal clear-

ing rule is to clear immediately, and V1(x, 1) = 11.6006 and

V1(x, 2) = 9.2630. As shown in Table 5, the optimal action

depends on not only the outstanding input x, but also the state

of the underlying process of the inputs. The resulting expected

total costs can vary significantly for different process states.

This justifies the need to use the Markovian arrival process

for the input process.

Next, we run the same model with the hybrid policy

(see Example 3.3.3) with parameters (w, T) and find the

expected total cost Ṽ (w,T)(x, i) for initial state (x, i). Appar-

ently, Ṽ (w,T)(x, i) is greater than V1(x, i) for all (x, i) and

any valid (w, T). For example, Ṽ (w,T)(∅, 1) is greater than

V1(∅, 1) = 6.3309 for any valid (w, T). We present the dif-

ference Ṽ (w,T)(∅, 1) − V1(∅, 1) in Table 6. The results show

that properly chosen (w, T) can perform very close to the

optimal policy for a specific x. However, it might be chal-

lenging to find a proper hybrid policy (w, T) for all states x.

Our extended numerical experiments demonstrate that even

the best hybrid policy may perform poorly. Thus, finding

the (nonhybrid type) optimal policy becomes an important

practical issue for stochastic clearing systems.

Example 6.2 has demonstrated that the optimal action

depends on the state of the underlying Markov chain of the

input process. In the next example, we study a case with

an infinite planning horizon and an input process with three

states.

Example 6.3 We consider a clearing system

with N = ∞, the discount factor 𝛼 = 0.95, the

delay penalty cost is Ht(yt) = 0.5
∑l

j=1 j(y[j])2,

the fixed clearing cost is K(wt) = 10 ⋅ 𝛿{|wt|>0},

and the input process is,

D0 =

(
0.1 0.0 0.2
0.0 0.2 0.1
0.1 0.0 0.7

)
, D1 =

(
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

)
,

D2 =

(
0.0 0.0 0.0
0.0 0.6 0.0
0.0 0.1 0.0

)
,

D3 =

(
0.0 0.0 0.0
0.1 0.0 0.0
0.0 0.0 0.0

)
, D4 =

(
0.0 0.0 0.0
0.0 0.0 0.0
0.1 0.0 0.0

)
,

D5 =

(
0.7 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

)
.

The optimal policy and the corresponding expected total

costs are shown in Table 7. Note that for all other states

x, we have V(x, 1) = 103.2129 and V(x, 2) = 98.5976,

V(x, 3) = 92.7427, and the optimal clearing rule is to clear

immediately. It is seen that the optimal policy depends on the

state i = 1,2,3, and the corresponding expected total costs are

significantly different. We would like to point out that, for this

example, the system state space is very large and the compu-

tation time is significantly longer than that of Examples 6.1

and 6.2.

The state space has n = 2850 states to search for the optimal

clearing policy. The maximum quantity in each state is about

10 (ie, ∣x ∣ ≤ 10). The time required to search for the opti-

mal policy is much longer than that for smaller cases, which

indicates that the search time increases significantly as the

state space increases. In fact, the state space would have been

much larger, if we had chosen parameters in Ht(x) and Kt(x)

differently.

The optimal policy given in Table 7 is identical to the opti-

mal policies for the finite horizon cases with N ≥ 6. This

example demonstrates that results for the infinite horizon case

could be used as approximations to the finite horizon cases, if

the planning horizon N is sufficiently large and the discount

rate 𝛼 is close to one.

Now, we enforce capacity constraints on the model and

assume that the clearing limit is W = 4, that is, as soon as

the total input quantity ∣x∣ reaches W, a clearing takes place

HE ET AL. 499

TABLE 6 Ṽ (w,T)
1

(∅, 1) − V1(∅, 1) for Example 6.2

w/T 2 3 4 5 6 7 8

1 5.7050 5.7050 5.7050 5.7050 5.7050 5.7050 5.7050

2 5.7050 2.9330 2.7396 2.7506 2.7808 2.8033 2.8099

3 5.7050 0.4763 0.3870 0.5488 0.6327 0.6925 0.7073

4 5.7050 0.4763 0.3661 0.9154 1.1161 1.2142 1.2392

5 5.7050 0.4763 0.7595 2.2187 2.5655 2.6874 2.7199

6 5.7050 0.4763 0.7595 3.5544 4.2084 4.3968 4.4337

TABLE 7 Summary of optimal clearing rules and costs for Example 6.3

x r*(x, 1) r*(x, 2) r*(x, 3) V(x, 1) V(x, 2) V(x, 3)

∅ 0 0 0 93.2129 88.5976 82.7427

[1] 0 0 0 95.3336 91.2785 88.3316

[2] 0 0 0 97.7533 95.3509 92.3415

[3] 0 0 1 100.5629 98.0499 92.7427

[4] 1 1 1 103.2129 98.5976 92.7427

[5] 1 1 1 103.2129 98.5976 92.7427

[1, 0] 0 0 0 96.1493 92.4478 89.8045

[1, 1] 0 0 0 97.0858 94.1799 91.6220

[1, 2] 0 0 1 98.9062 96.5499 92.7427

[1, 4] 0 1 1 101.5629 98.5976 92.7427

[1, 5] 1 1 1 103.2129 98.5976 92.7427

[2, 0] 1 1 1 103.2129 98.5976 92.7427

[2, 1] 0 0 1 99.9537 97.5499 92.7427

[2, 2] 0 0 1 100.5487 98.0499 92.7427

[2, 3] 0 1 1 102.0629 98.5976 92.7427

All other states 1 1 1 103.2129 98.5976 92.7427

TABLE 8 Summary of optimal clearing rules and costs for Example 6.3: with capacity limit W = 4

x r*(x, 1) r*(x, 2) r*(x, 3) V(x, 1) V(x, 2) V(x, 3)

∅ 0 0 0 93.8133 90.1047 83.5010

[1] 0 0 0 97.1633 95.3244 91.9127

[2] 0 0 0 98.6633 96.8244 93.4127

All other states 1 1 1 103.8133 100.1047 93.5010

immediately. The state space for searching for the optimal

clearing policy reduces to n = 797. The results are given in

Table 8, and they indicate that the costs can be substantially

higher, which is caused by the imposed capacity constraints.

7 CONCLUSIONS AND DISCUSSION

This paper studied a complex stochastic clearing system. The

main contributions of our research are (a) modeling of the

delay penalty cost as an increasing function of both the quanti-

ties and delays of individual inputs; (b) identifying the on-off

or threshold structure of the optimal policies; (c) develop-

ing efficient algorithms for computing the optimal policies;

and (d) gaining insights on the advantages of the new optimal

policies over the conventional hybrid policies. The optimal

policies found in this paper are state-dependent threshold

policies.

To extend the potential applications of our work, research

can be done in several directions, including systems with

(clearing) capacity constraints and/or variable (vs fixed)

clearing costs. For theoretical development, one may con-

sider continuous time and/or continuous quantities stochastic

clearing systems.

ACKNOWLEDGMENTS

We would like to thank three reviewers and the associate edi-

tor for their constructive suggestions and insightful comments

that helped us improve the quality of the paper significantly.

We would also like to thank NSERC for financial support to

this research through two discovery grants.

500 HE ET AL.

ORCID

Qi-Ming He https://orcid.org/0000-0003-2381-3242

REFERENCES

Asmussen, S., & Koole, G. (1993). Marked point processes as limits

of Markovian arrival streams. Journal of Applied Probability, 30,

365–372.

Beyer, D., Cheng, F., Sethi, S. P., & Taksar, M. (2010). Markov demand

inventory models. New York, NY: Springer US.

Bookbinder, J. H., Cai, Q., & He, Q.-M. (2011). Shipment consolida-

tion by private carrier: The discrete time and discrete quantity case.

Stochastic Models, 27(4), 664–686.

Bookbinder, J. H., & Higginson, J. K. (2002). Probabilistic modeling of

freight consolidation by private carriage. Transportation Research,
Part E, 38(5), 305–318.

Boxma, O. J., Perry, D., & Stadje, W. (2001). Clearing models for M/G/1

queues. Queueing Systems, 38(3), 287–306.

Cai, Q., He, Q.-M., & Bookbinder, J. H. (2014). A tree-structured

Markovian model of the shipment consolidation process. Stochastic
Models, 30(4), 521–553.

Çetinkaya, S., Tekin, E., & Lee, C. Y. (2008). A stochastic model for

joint inventory and outbound shipment decisions. IIE Transactions,

40(3), 324–340.

Chen, F., & Song, J. S. (2001). Optimal policies for multiechelon

inventory problems with Markov-modulated demand. Operations
Research, 49(2), 226–234.

Dudin, A. N., & Karolik, A. V. (2001). BMAP/SM/1 queue with Marko-

vian input of disasters and non-instantaneous recovery. Performance
Evaluation, 45(1), 19–32.

Higginson, J. K., & Bookbinder, J. H. (1994). Policy recommendations

for a shipment consolidation program. Journal of Business Logistics,

15(1), 87–112.

Higginson, J. K., & Bookbinder, J. H. (1995). Markovian decision pro-

cesses in shipment consolidation. Transportation Science, 29(3),

242–255.

Iglehart, D. L. (1963). Optimality of (s, S) policies in the infinite horizon

dynamic inventory problem. Management Science, 9(2), 259–267.

Inoue, Y., & Takine, T. (2014). The FIFO single-server queue with dis-

asters and multiple Markovian arrival streams. Journal of Industrial
and Management Optimization, 10(1), 57–87.

Kim, K., & Seila, A. F. (1993). A generalized cost model for stochastic

clearing systems. Computers & Operations Research, 20(1), 67–82.

Li, Q., & Yu, P. (2013). Multimodularity and its applications in three

stochastic dynamic inventory problems. Manufacturing and Service
Operations Management, 16(3), 455–463.

Li, Q., Yu, P., & Wu, X. (2016). Managing perishable inventories in

retailing: Replenishment clearance sales, and segregation. Opera-
tions Research, 64(6), 1270–1284.

Mutlu, F., Çetinkaya, S., & Bookbinder, J. H. (2010). An analytical

model for computing the optimal time-and-quantity-based policy for

consolidated shipments. IIE Transactions, 42(5), 367–377.

Neuts, M. F. (1979). A versatile Markovian point process. Journal of
Applied Probability, 16, 764–779.

Puterman, M. L. (2005). Markov decision processes: Discrete stochastic

dynamic programming. Hoboken, NJ: John Wiley and Sons.

Scarf, H. (1960). The optimality of (S, s) policies in the dynamic
inventory problem. In Mathematical methods in the social sciences.

Stanford, CA: Stanford University Press.

Song, J. S., & Zipkin, P. (1993). Inventory control in a fluctuating

demand environment. Operations Research, 41(2), 351–370.

Stidham, S. (1974). Stochastic clearing systems. Stochastic Processes
and their Applications, 2(1), 85–113.

Stidham, S. (1977). Cost models for stochastic clearing systems. Opera-
tions Research, 25(1), 100–127.

Stidham, S. (1986). Clearing systems and (s, S) inventory systems with

nonlinear costs and positive lead times. Operations Research, 34(2),

276–280.

Veinott, A. F., & Wagner, H. M. (1965). Computing optimal (s, S)

inventory policies. Management Science, 11(5), 525–552.

Xia, L., He, Q.-M., & Alfa, A. S. (2017). Optimal control of

state-dependent service rates in a MAP/M/1 queue. IEEE Transac-
tions on Automatic Control, 62(10), 4965–4979.

Zheng, Y. S. (1991). A simple proof for optimality of (s, S) policies in

infinite-horizon inventory systems. Journal of Applied Probability,

28(4), 802–810.

How to cite this article: He Q-M, Bookbinder JH,

Cai Q. Optimal policies for stochastic clearing

systems with time-dependent delay penalties. Naval
Research Logistics 2020;67:487–502.

https://doi.org/10.1002/nav.21931

APPENDIXA

The proofs of Theorem 4.1, 4.2, 5.1, and 5.2 are collected

in this Appendix.

Proof of Theorem 4.1 The theorem can be

proved by characterizing the functions Vt(x, i)
and Wt(x, i). We show that, under Condition 4.1,

x′
≤dx implies

Vt(x′, i) ≤ Vt(x, i) ≤ Vt(x′, i) + k̂t; (A1)

0 ≤ Ht(x) − Ht(x′) ≤ Wt(x, i) − Wt(x′, i)

≤ Ht(x) − Ht(x′) + k̂t+1, (A2)

for all x, x′ ∈Φ, i = 1, 2, … , M and t = 1, 2,

… , N.

We first observe that x′
≤dx implies that

Ht(x
′
)≤Ht(x) according to Condition 4.1 (ii),

for t = 1, 2, … , N. We then proceed with a

proof by induction on t. Note that for any i = 1,

2, … , M, we have HN(x)−HN(x′
)≥ 0 and

VN + 1(x, i)−VN + 1(x′
, i) = KN + 1(x)−KN + 1

(x′
)≥ 0. Since all inputs have to be cleared by

period N + 1, we have

WN(x, i) − WN(x′, i) = HN(x) − HN(x′)
+ E
[
VN+1(x ⌢ qN , iN+1)

− VN+1

(
x′ ⌢ qN , iN+1

)|iN = i
]
.

Then WN(x, i)−WN(x′
, i)≥ 0. Noting that ∅≤dx

for any state x, we have WN(x, i)−WN(∅, i)≥ 0.

https://orcid.org/0000-0003-2381-3242
https://orcid.org/0000-0003-2381-3242

HE ET AL. 501

From Equation (8), we have

VN(x′, i) = inf
y′≤x′

{
KN(x′ − y′) + WN

(
y′, i
)}

= min

{
inf

y′≤x′,y′≠x′
{k̂N + WN(y′, i)},WN(x′, i)

}
= min

{
k̂N + WN(∅, i), WN

(
x′, i
)}

≤ min
{

KN(x) + WN(∅, i), WN(x, i)
}
= VN(x, i).

Now suppose that Equations (A1) and (A2) both

hold for periods t+ 1, t+ 2, … , and N. We see

that, for period t,

E
[
Vt+1(x ⌢ qt, it+1) − Vt+1(x′ ⌢ qt, it+1)|it = i

]
=

M∑
j=1

Q∑
q=0

[
Vt+1(x ⌢ q, j) − Vt+1(x′ ⌢ q, j)

]
[Dq]i,j ≥ 0,

since x′
≤dx implies x′

⌢ q≤dx⌢ q. By

Equation (7) and Condition 4.1, we obtain

Wt(x, i)−Wt(x
′
, i)≥ 0, which leads to

Wt(∅, i) = infx∈ΦWt(x, i). Then we have

Vt(x′, i) = inf
y′≤x′

{
Kt(x′ − y′) + Wt

(
y′, i
)}

= min

{
inf

y′≤x′,y′≠x′
{k̂t + Wt(y′, i)},Wt(x′, i)

}
= min

{
Kt(x′) + Wt

(
∅, i
)
, Wt

(
x′, i
)}

≤ min
{

Kt(x) + Wt(∅, i), Wt(x, i)
}
= Vt(x, i). (A3)

We also have

Vt(x, i) = min{Kt(x) + Wt(∅, i), Wt(x, i)}

≤ Wt(∅, i) + k̂t

= min
{

Wt(∅, i), Wt
(
∅, i
)}

+ k̂t

≤ min
{

Kt(x′) + Wt
(
∅, i
)
, Wt

(
x′, i
)}

+ k̂t

= Vt(x′, i) + k̂t,

for all i = 1, 2, … , M and t = 1, 2, … , N, which

proves Equation (A1).

Next, we prove Equation (A2) by induction on

t. Recall that VN + 1(x, i)−VN + 1(x′
, i)≥ 0, and

so

WN(x, i) − WN(x′, i) = HN(x) − HN(x′)
+ E
[
VN+1(x ⌢ qN , iN+1) − VN+1

(
x′ ⌢ qN , iN+1

)|iN = i
]

≤ HN(x′) − HN(x) + E

[
k̂N+1𝛿∣x⌢qN ∣>0|iN = i

]
≤ HN(x′) − HN(x) + k̂N+1.

Thus, inequality (A2) holds for t = N. Now,

suppose that Equation (A2) holds for all t+ 1,

t+ 2, … , N; we need to show that it holds for t.
By the definition of Wt(x, i), we have

Wt(x, i) − Wt(x′, i) = Ht(x) − Ht(x′)
+ E
[
Vt+1(x ⌢ qt, it+1) − Vt+1

(
x′ ⌢ qt, it+1

)|it = i
]

= Ht(x) − Ht(x′)

+
M∑

j=1

Q∑
q=0

[
Vt+1(x ⌢ q, j) − Vt+1(x′ ⌢ q, j)

]
[Dq]i,j.

By the induction hypothesis and x′
⌢ q≤dx⌢ q,

the two inequalities in Equation (A2) are

obtained.

In the above proof of Equations (A1) and

(A2), Theorem 4.1 has been proved as a

by-product, as indicated in Equation (A3). ▪

Proof of Theorem 4.2 Using the same induc-

tion proof as for Theorem 4.1, we can easily

verify that, under Conditions 4.1 and 4.2, if

Ht(x)≤Ht(y) for some x, y∈Φ and t = 1, 2, … ,

N, then we must have, for all i, j = 1, 2, … , M,

i. Vt(x, i) ≤ Vt(y, i) ≤ Vt(x, i) + k̂t, and

ii. 0 ≤ Ht(y) − Ht(x) ≤ Wt(y, i) − Wt(x, i) ≤

Ht(y) − Ht(x) + k̂t+1.

The above results imply that, rather than hav-

ing to check the actual system state against

the sets of states with an “on” decision, opti-

mal clearing decisions can be based on the

delay penalty cost Ht. This leads to an opti-

mal state-dependent threshold clearing pol-
icy, which means that for any state x in the

tree-structured state space, if the optimal deci-

sion is to clear all, then the optimal decision

for any off-spring of x is to clear all. First, it is

easy to see that Equation (11) implies that x∗t (i)
is the sequence with the highest delay penalty

Ht among all sequences for which it is better to

continue to accumulate in period t, for under-

lying state i. Then in any period t = 1, 2, … ,

N and underlying state i, for any non-empty

system content y such that Ht(y) > Ht(x∗t (i)),
the above (i) and (ii) imply that Wt(y, i) >

Wt(x∗t (i), i). Consequently, Equation (11) shows

that Wt(y, i)>Wt(∅, i)+Kt(y), which means

clearing is preferred. On the other hand, for any

non-empty system state (z, i) such that Ht(z) ≤
Ht(x∗t (i)), we have Wt(z, i) ≤ Wt(x∗t (i), i). This

leads to Wt(z, i)≤Wt(∅, i)+Kt(z), which indi-

cates that clearing is not necessary. Therefore,

𝜏∗t,i = Ht(x∗t (i), i) is the threshold for the thresh-

old policy. Theorem 4.2 is proved. ▪

Proof of Theorem 5.1 We first show that the

limit exists. The existence of a upper bound for

V∞
n suggests that the sequence of functions V∞

n
is point-wise non-decreasing in n and bounded

from above, that is,

0 = V∞
0

≤ V∞
1

≤ · · · ≤ V∞
n ≤

k̂
1 − 𝛼

.

502 HE ET AL.

Therefore, by the monotone convergence

theorem, V∞
n converges point-wisely to V .

We now show that this limit is a solution to

Equation (20). First we have

V∞
n (x, i) ≤ V∞

n+1
(x, i)

= min
y≤x

{K(x − y) + H(y) + 𝛼E[V∞
n (y ⌢ q, j) ∣ i]} . (A4)

Thus, as n→∞, both sides of the above inequal-

ity converge, so that

V(x, i) ≤ min
y≤x

{K(x − y) + H(y) + 𝛼E[V(y ⌢ q, j) ∣ i]} .

On the other hand,

V∞
n (x, i) ≥ V∞

n−1
(x, i)

= min
y≤x

{K(x − y) + H(y) + 𝛼E[V∞
n−2

(y ⌢ q, j) ∣ i]}.

Passing to the limit in the preceding inequality

yields

V(x, i) ≥ min
y≤x

{K(x − y) + H(y) + 𝛼E[V(y ⌢ q, j) ∣ i]}. (A5)

Combining Equations (A4) and (A5),

Theorem 5.1 follows. ▪

Proof of Theorem 5.2 Under Condition 5.1,

if x′
≤dx, then

V(x′, i) ≤ V(x, i) ≤ V(x′, i) + k̂;
V(x, i) = min{K(x) + W(∅, i),W(x, i)}, (A6)

where W(y, i) = H(y) + 𝛼E[V(y ⌢ q, j) ∣ i], for

all i = 1, 2, … , M (note: q is a generic random

variable for the input in a period). Equation (A6)

implies that under Condition 5.1, the optimal

clearing policy exists and must be an on-off

control clearing policy. For the infinite case,

we have Ht(x) = Ht+ 1(x) = H(x). Applying

the limit argument, we can further show that,

under Condition 5.1, the optimal policy is of the

threshold type and the threshold policy is given

by Equation (24). This leads to Theorem 5.2. ▪

