
J. Appl. Prob. 58, 880–889 (2021)
doi:10.1017/jpr.2021.18

BOUNDS ON THE MEAN AND SQUARED COEFFICIENT OF VARIATION
OF PHASE-TYPE DISTRIBUTIONS
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Abstract

We consider a class of phase-type distributions (PH-distributions), to be called the
MMPP class of PH-distributions, and find bounds of their mean and squared coefficient
of variation (SCV). As an application, we have shown that the SCV of the event-
stationary inter-event time for Markov modulated Poisson processes (MMPPs) is greater
than or equal to unity, which answers an open problem for MMPPs. The results are useful
for selecting proper PH-distributions and counting processes in stochastic modeling.
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1. Introduction

Recently, the study of the variability of Markov modulated Poisson processes (MMPPs) (see
[6] and [7]) and Markov switched Poisson processes (MSPPs) (see [5]) has attracted the atten-
tion of many researchers (e.g. [2] and references therein). One of the main issues of interest is
to show that the squared coefficient of variations (SCV) of the event-stationary inter-arrival
time is greater than or equal to unity. Bounds of this kind are useful for selecting proper
PH-distributions and counting processes in stochastic modeling for applications in telecom-
munications, transportation, manufacturing, finance/insurance, and healthcare. While the issue
for MSPPs has been resolved largely in [2] and in the existing literature on hyper-exponential
distributions (e.g. [3]), the one for MMPP remained as an open problem, which is answered
in this paper. Since the event-stationary inter-event time, as well as the time-stationary inter-
arrival time, is a special phase-type distribution (PH-distribution), this paper investigates the
class of phase-type distributions related to MMPPs, and finds bounds for them, which lead to
the desired bounds for MMPPs.

PH-distributions were introduced by Marcel Neuts [14] in 1975. Since then, PH-
distributions have been investigated extensively (e.g. [17] and [18]) and have found appli-
cations in queueing theory and many other areas, including telecommunications, risk analysis,
and biology (e.g. [19] and [21]). PH-distributions play a key role in the area of matrix-analytic
methods [8, 10, 16]. Various bounds for PH-distributions have been obtained [1, 9, 18]. For
instance, Aldous and Shepp [1] found that the SCV of all PH-distributions is greater than or
equal to 1/m, where m is the order of the PH-representations. That bound depends only on
the order of the PH-distributions. O’Cinneide [18] obtained a number of bounds, notably the
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Bounds on the mean and squared coefficient of variation of phase-type distributions 881

steepest increase property of the density function of PH-distributions. He et al. [9] obtained
bounds for the moments, variance, and SCV of PH-distributions with infinite or finite support.
In this paper, for the aforementioned applications to MMPPs, we find order-free bounds for the
mean and parameter-free bounds for the SCV of the MMPP class of PH-distributions. Those
results are useful for the selection of PH-distributions in practice.

The rest of the paper is organized as follows. In Section 2 we introduce the MMPP class
of PH-distributions and show a few properties related to the PH-representations of such PH-
distributions. In Section 3 we state and prove the main results of the paper: bounds on the
mean and SCV of PH-distributions in the MMPP class. Section 4 concludes the paper by (i)
discussing applications to MMPPs, (ii) briefly talking about extensions to the discrete-time
PH-distributions, and (iii) listing problems for future research.

2. The MMPP class of PH-distributions and properties

A phase-type distribution, to be called a PH-distribution, is defined as the distribution of the
absorption time of a special state in a finite-state discrete/continuous-time Markov chain. Since
there is a one-to-one correspondence between the results obtained in this paper for discrete-
and continuous-time cases, we shall focus on continuous-time PH-distributions. Consider
a continuous-time Markov chain (CTMC) {Y(t), t ≥ 0} with m + 1 states and infinitesimal
generator (

T T0

0 0

)
,

where T is an m × m matrix with negative diagonal elements and non-negative off-diagonal
element, T0 is a non-negative and non-zero column vector of order m, Te + T0 = 0, and e is the
column vector with all elements being one. Define X = min{t : Y(t) = m + 1, t ≥ 0}. Assume
that Y(0) is distributed according to (α, αm+1). It is well known that

P{X < t} = 1 − α exp{Tt}e for t ≥ 0,

E[X] = −αT−1e,

E[X2] = 2αT−2e,

SCV (X) = 2αT−2e
(αT−1e)2

− 1. (2.1)

Random variable X has a PH-distribution and the pair (α, T) is called a PH-representation of
X. We refer to Neuts [16], He [8], and Buchholz, Kriege, and Felko [4] for the general theory
on phase-type distributions.

For the MMPP class of PH-distributions, we choose T = Q − D, where Q is an infinitesimal
generator for an irreducible CTMC and D is a non-zero diagonal matrix with non-negative
diagonal elements {d1, d2, . . . , dm}. In Section 4 we will use MMPPs to explain why T has
that structure. Let π = (π1, π2, . . . , πm) be the stationary distribution of Q, i.e. πQ = 0 and
πe = 1. Let λ = πDe and πD = πD/λ. We define the set of PH-random variables X with
PH-representation (π , Q − D) and XD with PH-representation (πD, Q − D) as the MMPP
class of PH-distributions. In the rest of this section we show several properties related to the
PH-representations (π, Q − D) and (πD, Q − D).

Let PQ = I + diag (π )Q/cQ, where diag (π) is a diagonal matrix with π on its diagonal, and
cQ is a constant satisfying cQ ≥ max{−qi,i, i = 1, 2, . . . , m}, and Q = (qi,j).

Lemma 2.1. The matrix PQ is a doubly stochastic matrix.
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Proof. Since Q is an infinitesimal generator, it is easy to see that PQ is non-negative, PQe =
e, and e′PQ = e′ + πQ/cQ = e′, where e′ is the transpose of e. Thus PQ is a doubly stochastic
matrix. �
Lemma 2.2. The matrix D − Q − λeπ is non-invertible if and only if D = λI, where I is the
identity matrix.

Proof. If D = λI, we have π (D − Q − λeπ ) = π (λI − λeπ ) = 0. Thus D − Q − λeπ has a
zero eigenvalue and so is non-invertible. This proves the sufficiency of the condition D = λI.

To show the necessity of the condition, let u = (u1, u2, . . . , um) be a non-zero left
eigenvector of D − Q − λeπ corresponding to the eigenvalue zero. Then we obtain

0 = u(D − Q − λeπ ) = u(D − Q) − λ(ue)π . (2.2)

If ue = 0, we have u(D − Q) = 0. Since D − Q is an M-matrix, D − Q is invertible and
(D − Q)−1 is positive elementwise (see [13]). That leads to u = 0, which is a contradiction.
Thus ue cannot be zero.

If ue is non-zero, without loss of generality, we assume that ue = 1. By (2.2), we obtain u =
λπ (D − Q)−1. Thus u is positive elementwise and, in fact, is a stochastic vector. Multiplying
both sides of (2.2) by e, we obtain

∑m
i=1 uidi = uDe = λ. By (2.2), we also obtain

u(D − λeπ ) = uQ = u(diag (π))−1 diag (π)Q = cQ(u(diag (π))−1)(PQ − I). (2.3)

Multiplying both sides of the above equation by (diag (π))−1u′, we obtain

u(D − λeπ )(diag (π))−1u′ = cQ(u(diag (π))−1PQ(diag (π ))−1u′ − u(diag (π ))−2u′). (2.4)

By Lemma 2.1, PQ is a doubly stochastic matrix. By the well-known Birkhoff theorem for
doubly stochastic matrices (see [13], or [12, A.2 Theorem]), we have

PQ =
∑
σ∈�

cσ Pσ ,

where � is the set of all permutations on {1, 2, . . . , m}, σ ∈ �, Pσ is the permutation matrix
associated with σ , and {cσ , σ ∈ �} are non-negative numbers with unit sum. For any real row
vector x = (x1, x2, . . . , xm) and permutation σ , it is well known that xPσ x′ ≤ xx′, which can
be shown easily as follows:

xPσ x′ =
m∑

i=1

xixσ (i) = 1

2

( m∑
i=1

2xixσ (i)

)
≤ 1

2

( m∑
i=1

(
x2

i + x2
σ (i)

)) = xx′. (2.5)

Consequently, the right-hand side of (2.4) is less than or equal to zero, which leads to u(D −
λeπ )(diag (π))−1u′ ≤ 0. This last expression can be rewritten explicitly as follows:

m∑
i=1

ui
di

πi
ui − λ(ue)2 =

m∑
i=1

(
1

di

)
d2

i u2
i

π2
i

πi − λ ≤ 0. (2.6)
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Bounds on the mean and squared coefficient of variation of phase-type distributions 883

Next we consider two cases: (i) all {d1, d2, . . . , dm} are positive, and (ii) some
{d1, d2, . . . , dm} are zero.

(i) If all {d1, d2, . . . , dm} are positive, we choose π as a measure defined on {1, 2, . . . , m},
p = −1, q = 1/2 (so that 1/p + 1/q = 1), f (i) = 1/di, and g(i) = (diui/πi)2. By Hölder’s
inequality (see (iii) in [12, D.1.C]),

∫
fg dπ ≥

(∫
f p dπ

)1/p(∫
gq dπ

)1/q

,

we obtain

m∑
i=1

(
1

di

)
d2

i u2
i

π2
i

πi ≥
( m∑

i=1

(
1

di

)−1

πi

)−1( m∑
i=1

(
d2

i u2
i

π2
i

)0.5

πi

)2

=
( m∑

i=1

diπi

)−1( m∑
i=1

diui

)2

= λ, (2.7)

in which we have used the facts πDe = uDe = λ. Combining (2.6) and (2.7), we obtain λ ≤∑m
i=1 u2

i di/πi ≤ λ, which implies that
∑m

i=1 u2
i di/πi = λ. On the other hand, the equality in

(2.7) holds if and only if f p and gq are proportional, i.e. f p/gq is constant, which implies that
di/(diui/πi) = πi/ui are the same for i = 1, 2, . . . , m. Since ue = πe = 1, we must have π = u,
which leads to πD = λπ by (2.2). Consequently, we must have di = λ for all i = 1, 2, . . . , m,
i.e. D = λI.

(ii) Next we consider the case for which some {d1, . . . , dm} are zero. We show that this
is impossible if D − Q − λeπ is non-invertible. Without loss of generality we suppose that
di = 0 for i = 1, 2, . . . , k, and di > 0 for i = k + 1, . . . , m. Accordingly, we partition vectors
u = (u1, u2), π = (π1, π2), and matrices

Q =
(

Q1,1 Q1,2
Q2,1 Q2,2

)
, D =

(
0 0
0 D2

)
.

In the above proof, since di = 0 for i = 1, . . . , k, we can restrict π to π2, u to u2, and D
to D2 in (2.7) to obtain u2 = γπ2 for some positive constant γ . We claim that γ = 1. By
u(D − Q − λeπ ) = 0, we obtain

u1(Q1,1 + λeπ1) + u2(Q2,1 + λeπ1) = 0,

u1(Q1,2 + λeπ2) + u2( − D2 + Q2,2 + λeπ2) = 0.

Using u2 = γπ2 and ue = u1e + u2e = 1, the above equations become

u1Q1,1 + γπ2Q2,1 + λπ1 = 0,

u1Q1,2 + γπ2(Q2,2 − D2) + λπ2 = 0.

Using π1 = π2Q2,1( − Q1,1)−1 and the above two equations, we obtain

π2(γ (Q2,2 + Q2,1( − Q1,1)−1Q1,2 − D2) + λ(I + Q2,1( − Q1,1)−2Q1,2)) = 0.
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Using π2(Q2,2 + Q2,1( − Q1,1)−1Q1,2) = 0, the above equation can be reduced to

π2(γ D2 − λ(I + Q2,1( − Q1,1)−2Q1,2)) = 0.

Note that λ = πDe = π2D2e > 0. Multiplying both sides of the above equation by e yields,
after canceling λ,

γ = π2(I + Q2,1( − Q1,1)−2Q1,2)e

= π2e + π2Q2,1( − Q1,1)−1( − Q1,1)−1Q1,2e = π2e + π1e = 1,

which proves the claim that γ = 1. On the other hand, we rewrite (2.3) as

1

cQ
u(D − λeπ ) + u(diag (π ))−1 = (u(diag (π ))−1)PQ.

For two vectors x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym), we reorganize their elements
in ascending order to obtain (x(1), x(2), . . . , x(m)) and (y(1), y(2), . . . , y(m)). Vector x majorizes

y if
∑j

i=1 x(i) ≤ ∑j
i=1 y(i), for j = 1, 2, . . . , m − 1, and xe = ye (see [12, A.1]). Since PQ is a

doubly stochastic matrix, vector u(diag (π))−1 majorizes u(D − λeπ )/cQ + u(diag (π))−1 (see
[12, B.2 Theorem (Hardy, Littlewood, and Pólya)]). Define

i(1) = arg min

{
ui

πi
, i = 1, 2, . . . , m

}
,

j(1) = arg min

{
uj

πj
+ 1

cQ
(ujdj − λπj), j = 1, 2, . . . , m

}
.

If ui(1)/πi(1) ≥ 1, we have ui/πi ≥ 1 for all i = 1, 2, . . . , m. By ue = πe = 1, we must have u =
π , which leads to πD = λπ and D = λI by (2.2) and contradicts to di = 0 for i = 1, 2, . . . , k.
Now we must have ui(1)/πi(1) < 1. Then we must have i(1) ≤ k and di(1) = 0, since ui/πi = γ = 1
for i = k + 1, . . . , m. By the above definition of vector majorization, we must have

ui(1)

πi(1)

+ 1

cQ
(ui(1)di(1) − λπi(1) ) ≥ uj(1)

πj(1)

+ 1

cQ
(uj(1)dj(1) − λπj(1) ) ≥ ui(1)

πi(1)

,

which leads to −λπi(1) ≥ 0, which is a contradiction. Consequently, if D − Q − λeπ is non-
invertible, then {d1, . . . , dm} must all be positive and equal to λ, i.e. D = λI. This completes
the proof. �
Lemma 2.3. We have limx→∞ (D − xQ)−1 = eπ/λ.

Proof. For convenience, let �(x) = (D − xQ)−1, for x > 0. Since D − xQ is an M-matrix for
x > 0, �(x) exists and is positive elementwise. Then we have (D − xQ)�(x) = I. Multiplying
both sides of the expression by π , we obtain πD�(x) = π . Since π is positive ele-
mentwise, limx→∞ D�(x) exists. Since xQ�(x) = I − D�(x), limx→∞ Q�(x) = limx→∞ (I −
D�(x))/x = 0. Since Q is an irreducible infinitesimal generator, its left and right eigenvectors
of eigenvalue zero (a.k.a. Perron–Frobenius eigenvectors [13]) are unique up to a constant.
Thus we must have limx→∞ �(x) = ey, where y is a positive vector. In a similar way, we can
show that limx→∞ �(x)Q = 0. Thus we must have limx→∞ �(x) = ρeπ , where ρ is a posi-
tive constant. Letting x go to infinity in πD�(x) = π , we obtain πDρeπ = π , which leads to
ρ = 1/(πDe) = 1/λ. �
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3. Main results for the MMPP class of PH-distributions

First, we show that 1/λ is a lower bound of the mean of X. We state the result in a more
general manner, which is also needed in the proof of the result. Let Xx be the PH-random
variable with PH-representation (π, xQ − D) for all x > 0. We recall that D is diagonal, non-
zero, and non-negative, and Q is irreducible throughout this paper.

Theorem 3.1. For {D, Q, π} defined in Section 2, we have

E[Xx] = π (D − xQ)−1e ≥ 1

λ
for x > 0.

The equality holds in the equation if and only if all diagonal elements of D are equal to
each other (i.e. Xx has an exponential distribution with parameter λ). In addition, we have
limx→0 E[Xx] = πD−1e and limx→∞ E[Xx] = 1/λ.

Proof. If D = λI, it is easy to verify that E[Xx] = 1/λ for all x > 0. Thus all results hold.
Now we suppose that {d1, . . . , dm} are not all equal to each other. First, we show that

limx→0 E[Xx] > 1/λ. If one of the diagonal elements of D is zero, limx→0 E[Xx] = ∞ > 1/λ. If
all diagonal elements of D are positive, limx→0 E[Xx] =E[X0] = πD−1e = ∑m

i=1 πi/di. Then
limx→0 E[Xx] > 1/λ is equivalent to

( m∑
i=1

πi/di

)( m∑
i=1

πidi

)
> 1,

which can be verified easily as follows:

( m∑
i=1

πi/di

)( m∑
i=1

πidi

)
=

m∑
i=1

π2
i +

∑
i<j

πiπj

(
di

dj
+ dj

di

)

>

m∑
i=1

π2
i + 2

∑
i<j

πiπj

=
( m∑

i=1

πi

)2

= 1.

Thus we must have E[Xx] > 1/λ, if x is close to zero (recall that {d1, . . . , dm} are not all equal
to each other). IfE[Xx] > 1/λ holds for all x > 0, the desired result is obtained. Otherwise, there
must be x > 0 such that E[Xx] = 1/λ, i.e. π(D − xQ)−1e = 1/λ, since E[Xx] is continuous in x
for x > 0.

Next we show that π (D − xQ)−1e = 1/λ if and only if matrix D − xQ − λeπ is non-
invertible. If the matrix is non-invertible, there exists a non-zero row vector u such that
u(D − xQ − λeπ ) = 0. By the proof of Lemma 2.2, ue cannot be zero, and without loss of
generality we suppose that ue = 1. By (2.2) we obtain u = λπ (D − xQ)−1. Multiplying both
sides of the expression by e, we obtain 1 = ue = λπ (D − xQ)−1e. So we have shown the
sufficiency of the condition. On the other hand, if 1 = λπ (D − xQ)−1e, we can verify that
λπ (D − xQ)−1(D − xQ − λeπ ) = 0, which implies that D − xQ − λeπ has an eigenvalue zero.
Thus D − xQ − λeπ is non-invertible. This proves the necessity of the condition.
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Since we suppose that {d1, . . . , dm} are not all equal to each other, by Lemma 2.2, matrix
D − xQ − λeπ is invertible. Thus λπ (D − xQ)−1e = 1 cannot be true, which is a contradiction.
Consequently, E[Xx] has to be above 1/λ for all x > 0 for this case.

Combining results for the two cases (i.e. {d1, . . . , dm} are all equal or not), we have shown
π (D − xQ)−1e ≥ 1/λ for x > 0.

Finally, the result limx→∞ E[Xx] = 1/λ can be obtained directly from Lemma 2.3. �

Let XD,x be the PH-random variable with PH-representation (πD, xQ − D) for all x > 0. The
squared coefficient of variation of XD,x is defined as

SCV (XD,x) =E[(XD,x −E[XD,x])2]/(E[XD,x])2.

Theorem 3.2. For {D, Q, π} defined in Section 2, we have E[XD,x] = 1/λ and

SCV (XD,x) = 2λE[Xx] − 1 ≥ 1 for x > 0. (3.1)

The equality holds if and only if D = λI.

Proof. Since πD(D − xQ)−1 = π , we have

E[XD,x] = πD(D − xQ)−1e = πD

λ
(D − xQ)−1e = πe

λ
= 1

λ
.

By the definition of SCV, we have

SCV (XD,x) =E[X2
D,x]/(E[XD,x])2 − 1.

Further, by Theorem 3.1, we obtain

SCV (XD,x) = E[X2
D,x]

(E[XD,x])2
− 1

= 2πD(D − xQ)−2e
(E[XD,x])2 − 1

= 2λπ (D − xQ)−1e − 1

≥ 2 − 1

= 1. (3.2)

By Theorem 3.1, the equality holds in (3.2) if and only if D = λI, i.e. when Xx and XD,x are
exponential random variables with parameter λ. �

Define E[X0] = πD−1e if di > 0 for i = 1, 2, . . . , m, and ∞ otherwise. We note that, with
the definition of E[X0], Theorems 3.1 and 3.2 hold for x ≥ 0.

Theorem 3.3. We have E[Xx] ≤E[X0] (i.e. π(D − xQ)−1e ≤ πD−1e), for x > 0.

Proof. If at least one of {d1, d2, . . . , dm} is zero, then E[X0] = ∞ and the desired result is
obtained.

Now suppose that all {d1, d2, . . . , dm} are positive. Then E[Xx] ≤E[X0] is equivalent to

π (D − xQ)−1e − πD−1e = π (D − xQ)−1(D − (D − xQ))D−1e

= xπ (D − xQ)−1QD−1e

≤ 0. (3.3)
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Let Q1 = D diag (π )(D − xQ)−1Q. It can be verified that Q1e = 0 and e′Q1 = 0, noting
that D diag (π) = diag (π)D. Then P1 = I + Q1/c1 is a doubly stochastic matrix for c1 ≥
max{−(Q1)i,i, i = 1, 2, . . . , m}. Then (3.3) can be rewritten as

xe′D−1D diag (π )(D − xQ)−1QD−1e = xc1(D−1e)′(P1 − I)D−1e

≤ xc1(D−1e)′(I − I)D−1e

= 0,

where the inequality can be proved by using (2.5). The proof is complete. �

Combining Theorems 3.1 and 3.3, we obtain 1/λ ≤E[Xx] ≤E[X0], for x ≥ 0.
For some special cases, we can further show that E[Xx] and SCV (XD,x) are decreasing in x,

and SCV (Xx) ≥ 1. A CTMC is called time-reversible if its infinitesimal generator Q satisfies
Q = (diag (π))−1Q′ diag (π) (see [20, Section 6.6]).

Theorem 3.4. If the CTMC with infinitesimal generator Q is time-reversible, then (i) E[Xx]
and SCV (XD,x) are non-increasing in x, for x > 0, and (ii) SCV (Xx) ≥ 1, for x > 0.

Proof. To prove part (i), we show that the derivative of E[Xx] is non-positive for x > 0. By
routine calculations, we can obtain

dE[Xx]

dx
= π (D − xQ)−1Q(D − xQ)−1e for x > 0.

We rewrite the above expression as follows:

dE[Xx]

dx
= e′(D − x diag (π )Q(diag (π))−1)−1(diag (π)Q)(D − xQ)−1e.

Note that π = e′ diag (π) and diag (π )D(diag (π))−1 = D. Let

u = π(D − xQ)−1(diag (π ))−1 = e′(D − x diag (π)Q(diag (π))−1)−1

and v = (D − xQ)−1e. Since Q is time-reversible, we obtain v = u′. Using Lemma 2.1, similar
to the proof of Lemma 2.2, we obtain

dE[Xx]

dx
= cQu(PQ − I)u′ ≤ 0 for x > 0.

Therefore E[Xx] is non-increasing in x, and so is SCV (XD,x) by (3.1).
To prove part (ii), by (2.1), it is sufficient to show π (D − xQ)−2e ≥ (π (D − xQ)−1e)2. Using

vectors u and v defined above, the inequality can be rewritten as

π(D − xQ)−2e = u diag (π)v ≥ uπ ′πv = (π (D − xQ)−1e)2.

If Q is time-reversible, then v = u′, and the above inequality is equivalent to
∑m

i=1 πiu2
i ≥

(
∑m

i=1 uiπi)2. This last inequality can be proved as follows:
( m∑

i=1

uiπi

)2

=
m∑

i=1

u2
i π

2
i +

∑
i<j

πiπj(uiuj + ujui) ≤
m∑

i=1

u2
i π

2
i +

∑
i<j

πiπj(u2
i + u2

j ) =
m∑

i=1

πiu
2
i .

This proves the theorem. �
Corollary 3.1. Results in Theorem 3.4 hold for Xx and XD,x with the following types of Q
matrix: (i) m = 2, (ii) the CTMC with Q is a (truncated) birth and death process, and (iii) Q is
symmetric.
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4. Applications, extensions, and future research

4.1. Applications to the MMPPs

Markovian arrival processes (MAP) were introduced as a counting processes by Marcel
Neuts [15] in 1979. An MAP has a matrix representation (D0, D1), where D0 is a matrix for
the transition rates without an arrival/event, and D1 is a matrix for the transition rates with an
arrival. The MAP is associated with a underlying Markov chain with infinitesimal generator
D0 + D1. We refer to Lucantoni [11] for more on the definition and notation of MAPs.

An MMPP is a special Markovian arrival process with matrix representation (D0 = Q −
D, D1 = D), where Q is an irreducible infinitesimal generator of order m and for transitions
without arrivals, and D is a non-negative diagonal matrix for the arrival rates. Within each state
of the underlying Markov chain Q, the arrivals form a Poisson process. For instance, within
state i, arrivals form a Poisson process with parameter di. Thus the arrival rate is modulated
by the underlying Markov chain, which is why the counting process is called a Markov mod-
ulated Poisson process. Since Q is irreducible and m is finite, the stationary distribution of
the underlying Markov chain Q exists and is denoted by π . Then the time-stationary inter-
arrival times have a PH-distribution with PH-representation (π, Q − D), which is the random
variable X defined in Section 2. The event-stationary inter-arrival times have a PH-distribution
with PH-representation (πD, Q − D), which is the random variable XD defined in Section 2.
Consequently, Theorems 3.1 and 3.2 apply to the two types of inter-arrival times for MMPPs.
Those results imply that (i) on average, the time-stationary inter-arrival time is longer than the
event-stationary inter-event time, and (ii) the SCV of the event-stationary inter-event time is
greater than or equal to unity. The only MMPP whose SCV is unity is the Poisson process. The
insight is that MMPPs are not suitable for modeling input processes whose SCV is less than
one, which is useful for engineers and researchers to select proper point processes in stochastic
modeling. Since MMPPs have been used in stochastic modeling in science and engineering for
more than half a century, the results are theoretically and practically interesting.

4.2. Extensions to the discrete-time PH-distributions

All results obtained in this paper for the continuous-time case can be translated to the
discrete-time case. We consider a discrete-time PH-distribution with PH-representation (π, P),
where P is an irreducible substochastic matrix and π is the stationary distribution of a discrete-
time Markov chain with transition probability matrix P + diag (p0), where p0 = (I − P)e.
Define Q = P + diag (p0) − I and D = diag (p0). It is easy to verify that πQ = 0. We define
two discrete-time PH-distributions Xd and XD,d with PH-representations (π, P) and (πD, P),
respectively. Recall that X and XD are defined in Section 2 with PH-representations (π , Q − D)
and (πD, Q − D), respectively. It is easy to verify that E[X] =E[Xd], E[X2] =E[X2

d], E[XD] =
E[XD,d], and E[X2

D] =E[X2
D,d]. Consequently, means and SCVs of the discrete case have the

same bounds as the continuous case. For instance, the SCV of XD,d with (πD, P) is greater
than or equal to unity.

4.3. Future research

Numerically, all continuous-time MMPP type PH-distributions have the following proper-
ties:

• Xx is stochastically larger than XD,x and Xx is stochastically larger than the exponential
distribution with parameter λ = πDe,
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• SCV (Xx) ≥ 1, for x > 0,

• E[Xx] and SCV (XD,x) are convex and non-increasing in x, for x ≥ 0,

• E[Xx] is convex in (d1, d2, . . . , dm).

These are interesting questions for future studies.
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